

ECE-499: Electrical and Computer Engineering Capstone Design Project III

The AFµS (Autonomous Flocking µ-Sub) Project

Technical Design Report

Written by Jacob Karaul and Xavier Quinn

Advisors: Walter Dixon and Professor Hedrick

March 26, 2020

Report Summary

Underwater data collection is a field that concerns the tracking, monitoring, or gathering

of underwater data and has significant financial, social, and environmental implications.

Technologies used to attain this data are vast, but suffer from key shortcomings that prevent their

adoption at mass in society. Autonomous Underwater Vehicles (AUV’s) provide a cheap and

autonomous option, however current industry products suffer either from a high price point or

lack in ease of use (i.e. meters long and several tons heavy). Recently, AUV’s have been

emerging on the micro-scale (a few feet in length), easily operable by one person.

This project is the Autonomous Flocking µ-Sub project, or AFµS project. The goal of this

project is to develop a micro-scale AUV at a cost of no more than $500, thus both handlable and

affordable by a much larger audience. Further specifications include a communication system

with a BER less than 10%, data rate of at least 62.5 bps, and transmission distance of at least 1

meter, as well as successful obstacle detection at 1.5 meters away, and finally position holding in

a 5 meter cube for at least 5 minutes. Flocking capabilities will increase the applicability of the

product, and is achievable by utilizing a low latency optical communication system. Sonar is

used for obstacle avoidance, and a combination of inertial measurement and global positioning

allows for navigation and exploration. Results of this project show that decent performance in

communication, locomotion and obstacle avoidance can still be achieved with off-the-shelf

electrical components, however dead-reckoning using an off-the-shelf inertial measurement unit

is not feasible due to unbounded error accumulation.

1

Table of Contents

Report Summary 1

List of Tables and Figures 5
Tables 5
Figures 5

Introduction 10

Background 12

Design Requirements 15

Design Alternatives 21
Communication 21
Power 25
Processing 26
Sensing 27

Movement 27
Water Sensors 29
Local Awareness 29

Movement 35

Preliminary Proposed Design 38
Hardware 40

Communication block 41
Power block 44
Processing block 51
Sensing block 53
Movement block 56

Software 58
IMU Handler 59
Local Awareness 59
Sensor Bay Handler 60
Communicator 60
Motion Data 60
Archivist 60

2

Navigator 61
Emergency Handler 62
Pilot 62
Captain 62
Engine 68

Design Changes 69

Current Design and Implementation 70
Movement (performed by Jacob) 70
Dead Reckoning (performed by Xavier) 71
Communication (performed by Jacob) 97
Obstacle Avoidance (performed by Xavier) 101

Hardware 101
Software 113

Performance estimates and results 114
Movement (performed by Jacob) 114

Software PWM Library under load 114
Heading Change PID Controller 114
Discussion 126

Dead Reckoning (performed by Xavier) 127
Communication (performed by Jacob) 131

Early UWOC Component Testing (white light) 131
Final UWOC Component In-air testing 135
UWOC Tank Results 137
Discussion 139

Obstacle Avoidance (performed by Xavier) 140

Production Schedule 143
MKI phase 143
MKII phase 144
MKIII phase 145
Future work 146

Conclusions 146

References 147

Appendices 150
A) Team dynamics 150

3

B) Media 153
Uncurated live updated photo gallery of work to date: 153
Media from pool tests: 153

C) Meeting Log 153
D) Code 158

Movement 158
ats_captain.py 158
ats_engine.py 168
base_engine.py 174

Dead Reckoning 174
IMU_handler.py 174
motion_data.py 176
filter_minimization.py 183

Sonar 190
sonar.py 190

Communication 195
decoder.py 195
encoder.py 199

4

List of Tables and Figures

Tables

Table. 1. Power consumption breakdown of all hardware components (page 42)

Table. 2. IO breakdown of all hardware components that interface with the SBC (page 45)

Table. 3. Average completion times with P=0.1, I=0.05, D=0.025 (page 100)

Figures

Fig. 1. Functionality tree (page 15)

Fig. 2. Timing diagram of the PPM protocol (page 18)

Fig. 3. Illustration of PPM clocking (page 19)

Fig. 4. Relationship between attenuation and wavelength in oceans. (page 29) 1

Fig. 5. Relationship between attenuation and frequency in oceans. (page 32) 2

Fig. 6. CAD model of hubless rim driven thruster (page 36)

Fig. 7. Hardware Block IO Diagram (page 39)

Fig. 8. Hardware IO diagram for Communications block (page 40)

Fig. 9. Optical emitter transistor switching circuit (page 41)

Fig. 10. Optical receiver circuit (page 42)

1 J. Sticklus, P. A. Hoeher and R. Röttgers, "Optical Underwater Communication: The Potential of Using Converted
Green LEDs in Coastal Waters," in IEEE Journal of Oceanic Engineering, vol. 44, no. 2, pp. 535-547, April 2019.
2 Ainslie M. A., McColm J. G., "A simplified formula for viscous and chemical absorption in sea water", Journal of
the Acoustical Society of America, ​103​(3), 1671-1672, 1998.

5

Fig. 11. Hardware IO Diagram for Power block (page 43)

Fig. 12. Hardware IO Diagram for Processing block (page 50)

Fig. 13. Hardware IO diagram for Sensing block (page 52)

Fig. 14. Hardware IO diagram for Movement block (page 55)

Fig. 15. Software Diagram (page 57)

Fig. 16. PID controller diagram (page 64)

Fig. 17. PID controller output equation (page 64)

Fig. 18. Pseudocode for PID output to motor change logic (page 66)

Fig. 19. Fourier transform of predicted motion (page 71)

Fig. 20. Unfiltered predicted motion data (page 72)

Fig. 21. Filtered predicted motion data (page 73)

Fig. 22. Drop test acceleration data (page 74)

Fig. 23. Stationary Acceleration data with a range of filters applied, order 1 (page 75)

Fig. 24. Stationary Acceleration data with a range of filters applied, order 3 (page 76)

Fig. 25. Acceleration data with a range of filters applied, under motion (page 77)

Fig. 26. Velocity and displacement from simulated acceleration data (page 78)

Fig. 27. Velocity and displacement from simulated acceleration data (page 79)

Fig. 28. Velocity and displacement from simulated acceleration data (page 80)

Fig. 29. Displacement XYZ (cm), vertical motion test (page 81)

Fig. 30. Motion generating test rig (page 82)

Fig. 31. Spin test acceleration values (page 83)

Fig. 32. Spin regression results (page 84)

6

Fig. 33. Calculated acceleration value for scoring (page 85)

Fig. 34. Calculated velocity value for scoring (page 86)

Fig. 35. Calculated displacement value for scoring (page 87)

Fig. 36. Nonlinear spin acceleration (page 88)

Fig. 37. Calculated Vs. measured & filtered acceleration (page 89)

Fig. 38. Calculated and measured acceleration, synchronization issue (page 90)

Fig. 39. Calculated and measured acceleration, significant synchronization issue (page 91)

Fig. 40. Calculated, measured and filtered acceleration, valley based synchronization (page 92)

Fig. 41. Calculated and measured acceleration, valley detection issue (page 93)

Fig. 42. Calculated, measured and filtered acceleration, good looking results (page 94)

Fig. 43. Measured, real and calculated values from filter (page 95)

Fig. 44. UWOC tank, empty (page 96)

Fig. 45. Underside of UWOC tank lid with LEDs (page 97)

Fig. 46. Completed LED stand for UWOC tank (page 98)

Fig. 47. LED test rig part, disassembled (page 100)

Fig. 48. LED test rig part, assembled (page 100)

Fig. 49. UWOC tank, completed (page 101)

Fig. 50. Unamplified read in signal from undriven hydrophone to oscilloscope (page 103)

Fig. 51. Driven hydrophone output (page 104)

Fig. 52. DC filtered hydrophone output (page 105)

Fig. 53. 4th order butterworth filter (page 106)

Fig. 54. Response of 4th order butterworth filter (page 107)

7

Fig. 55. Filtered received ping signal (page 108)

Fig. 56. Comparator result from a ping signal (page 109)

Fig. 57. Rectified signal (page 110)

Fig. 58. Smoothed rectified signal (page 111)

Fig. 59. Smooth signal and associated comparator output (page 112)

Fig. 60. Sonar receiver circuit diagram (page 113)

Fig. 61. Sonar receiver circuit (page 113)

Fig. 62. Photo of the ATS Mk. 1 (page 116)

Fig.63. Illustration of quarter amplitude decay (page 118)

Fig. 64. ATS Mk. 1 in action (page 119)

Fig. 65. PID oscillation at P=0.25, low frequency (page 120)

Fig. 66. PID oscillation at P=0.25, high frequency (page 120)

Fig. 67. PID performance at P=0.15, t=14s (page 120)

Fig. 68. PID performance at P=0.15, t=7s (page 120)

Fig. 69. PID performance at P=0.1, I=0.0 (page 121)

Fig. 70. PID performance at P=0.15, I=0.05 (page 121)

Fig. 71 PID performance at P=0.1, I=0.075 (page 122)

Fig. 72. PID performance at P=0.1, I=0.05, and D=0.1 (page 123)

Fig. 73. PID performance at P=0.1, I=0.05, D=0.05 (page 124)

Fig. 74. PID performance at P=0.1, I=0.05, D=0.025, test #1 (page 125)

Fig. 75. PID performance at P=0.1, I=0.05, D=0.025, test #2 (page 125)

Fig. 76. PID performance at P=0.1, I=0.05, D=0.025, test #3 (page 125)

8

Fig. 77. Measured, real, and calculated values, stationary test (page 128)

Fig. 78. Measured, real, and calculated values. Stationary, then moved, test (page 129)

Fig. 79. Measured, real, and calculated values. Reversed motion test (page 130)

Fig. 80. Optical pulsing at 100 Hz (page 132)

Fig. 81. Optical pulsing at 300 Hz (page 133)

Fig. 82. Optical pulsing at 500 Hz (page 134)

Fig. 83. Phototransistor voltages vs. distance for white light system (page 135)

Fig. 84. Distance vs. V_compare voltage for bright/dark lighting, in-air (page 137)

Fig. 85. Bit Error Rate vs. Illuminance for UWOC tank tests (page 139)

Fig. 86: 3D printed sonar module test rig with waveguide (page 141)

Fig. 87: Received echo. Yellow is the trigger for the transducer, blue is the received and filtered

signal, and purple is the comparator output (page 142)

Fig. 88: results of too close sonar module (page 143)

9

Introduction

Underwater exploration is a field of study that involves investigating chemical and

physical characteristics of large water bodies (typically oceans) and the organisms that reside in

them. In total, humanity has explored about 8% of the world’s water bodies, and only 5% of

ocean basins . Some areas of study in this field are oil spills, habitation patterns for aquatic 3

species, residual radiation and other contaminants, turbidity levels, and general 3D mapping, all

of which have significant health or monetary implications. A need for accurate underwater data

can be found in the Great Lakes, a source of 21% of the world’s freshwater supply , which 4

suffers from harmful algal blooms (HAB’s) in various locations that render the water

undrinkable. More locally, HAB’s are also present in Moreau Lake State Park in Saratoga

County at such a debilitating quantity that several pets have died and parts of the state park have

been shut down . Underwater data collection would be useful in these instances to detect oxygen 5

and toxicity levels where HAB’s are present in order to characterize and document them.

Systems that can generate this data are vast; there are large research vessels outfitted with

research teams and sensing equipment, stationary underwater sensor networks, and Remotely

Operated Vehicles, or ROV’s, that are controlled on the surface (just to name a few). All of these

systems are limited by the fact that they require active governance by humans, therefore making

these technologies for underwater data collection quite slow. This limitation spurred the

emergence of Autonomous Underwater Vehicles, or AUV’s, which are capable of performing

3 ​https://oceanexplorer.noaa.gov/backmatter/whatisexploration.html
4 ​https://coast.noaa.gov/states/fast-facts/great-lakes.html
5 ​https://www.timesunion.com/7dayarchive/article/Moreau-State-Park-reports-algae-bloom-14341929.php

10

https://oceanexplorer.noaa.gov/backmatter/whatisexploration.html
https://coast.noaa.gov/states/fast-facts/great-lakes.html
https://www.timesunion.com/7dayarchive/article/Moreau-State-Park-reports-algae-bloom-14341929.php

some decision-making during their journeys. These vehicles can be “dropped” into a water body

with mission parameters and, depending on the system, may run for days or weeks at a time with

no human contact.

The goal for our project is to develop an autonomous underwater vehicle with reasonable

accuracy at a much lower price point than is currently possible by leveraging recent emergences

in low-cost Single Board Computers (SBC’s), Inertial Measurement Units (IMU’s), and high

performance motors/motor drivers to do so. A single system will be affordable, but will still be

accurate enough to be useful for a range of uses. This team also includes two mechanical

engineers: Alexander Pradhan and Samuel Veith, who will be designing the hull, thrusters, and

renewable charging solution for their senior capstone project. They will also construct and

maintain all test systems. Their specific contributions are mentioned below when relevant.

Even with a team of four students, this project is a large endeavor to say the least. Two of

the most limited resources are time and money, so it is imperative that both be spent on worthy

causes. Therefore, we will be purchasing off-the-shelf components whenever possible and

focusing our efforts on implementing systems that require finer control and precision, and are

large blocks in the scope of this project. Any non-mandatory systems that take too much

time/money to implement will be either stashed away for future work or eliminated entirely.

Finally, a clear schedule will provide deadlines from both computer/electrical and mechanical

engineering teams to ensure that work continues in parallel. See ​Implementation Schedule​ for

specifics.

Furthermore, with these constrictions, it is not feasible to design and build an AUV that

can boast better performance than any of the systems already in existence. The ​Design

11

Requirements​ section details the specifications that we believe can be accomplished, and are still

respectable enough for this product to be useful.

This paper details the background of the field, design requirements and alternatives,

overall design and implementation, test results, schedule, and a discussion for the Autonomous

Flocking µ-Sub project.

Background

Though the development of AUVs was not possible until computation units were

sufficiently advanced for real-time autonomous navigation, a wide range of AUVs have come

out since this point. Based on the necessary size of these computation units since their

capabilities reached those necessary for autonomy, the initial generations were extremely large

scale. Only in recent years have some AUVs shrunk below the size of human carrying

submersibles. Currently, there exists a large variation in the size of available aquatic autonomous

vessels based on their desired functionality. The need for highly precise sensor data, locomotion,

or long term deployment all result in a bulkier product, and there has even been an increased

interest in highly use specific AUV designs with their own physical requirements . 6 7

As developments in technology have allowed them to do so, an increase in micro-scale

AUVs has occurred. These systems are roughly defined as being in the ~1 meter or less range,

and inevitably have less precise sensors and reduced capabilities from their full scale

counterparts. Examples of such AUVs are the Hydroid REMUS M3V , the Hydromea Exray 8 9

6 ​https://www.hakaimagazine.com/news/rangerbot-programmed-to-kill/
7 ​https://spectrum.ieee.org/robotics/humanoids/meet-aquanaut-the-underwater-transformer
8 ​https://www.hydroid.com/REMUS-M3V
9 ​https://www.hydromea.com/exray-wireless-underwater-drone/

12

https://www.hakaimagazine.com/news/rangerbot-programmed-to-kill/
https://spectrum.ieee.org/robotics/humanoids/meet-aquanaut-the-underwater-transformer
https://www.hydroid.com/REMUS-M3V
https://www.hydromea.com/exray-wireless-underwater-drone/

and the Riptide µUUV . All three of these are small and light enough to be hand deployed and 10

retrieved, making them drastically more useful to anyone who does not have access to hoist

equipment. All of the companies that manufacture AUVs have attempted to maximize the

precision and capability of their products; all manufacturers also maintain a price point high

enough to limit who can reasonably afford to use their services.

The majority of the microscale AUVs on the market have been designed for very specific

uses, and therefore contain a sensor suite perfectly suited to said task. An example of this is the

Hydromea Exray, which is designed with the specific task of exploring and measuring the wall

thickness of flooded confined spaces, such as shipping vessel ballast tanks. This means that this

particular AUV does not have much use outside of this task, regardless of how well suited the

rest of the system is for another application. The Riptide µUUV has the option for a sensor

payload bay to be attached in the middle of the AUV that allows for water to flow through it.

This is to allow the user to design and build their own completely seperate sensor collection

system and place it inside the bay to record data.

Although humanity has explored only a tiny percentage of the world’s ocean bodies, we

are dependent on oceans for underwater chemical/physical processes such as photosynthesis, safe

transportation of cargo ships that carry billions of dollars in merchandise, stable and regenerable

food sources, renewable generation of electricity, and countless more examples. The economic

effects of cheap-to-collect, widespread submersibles with comprehensive interfaces can allow for

not only researchers, but civilians to gather oceanic data in an automated fashion. Combined with

open repositories for users to post and view this data, putting our world’s oceans on the map can

10 ​https://riptideas.com/micro-uuv/

13

https://riptideas.com/micro-uuv/

be accomplished in the scale of years as opposed to decades. This will increase financial gains in

a variety of industries; for example, cargo ships can identify routes with minimal interference

from currents and save fuel, HAB’s can be identified as soon as they emerge, thus preventing

costly cleanup methods and loss in business (if located in a public park), and more.

As of now there is no AUV that fills the niche of a highly affordable system, with or

without the drawbacks expected from less expensive equipment. As not all aquatic data

collection needs high precision location or external sensor information, a system affordable

enough for individual or university level research would greatly increase the amount of aquatic

based monitoring and analysis, which is needed with today's climate conditions now more than

ever.

With an exponentially growing population, the amount of waste humans will produce

will undoubtedly grow as well; it is therefore vital that future engineering design take

environmental sustainability as a demand. This product will be useful in a large number of

ongoing sustainability efforts, such as pollution management, biological hotspot detection, and

nutrient monitoring. Due to its place in the “sustainability” market, this product will be

applicable in society and to individuals for the foreseeable future, especially due to its low price

point.

While it may be desirable to make an AUV system as cheap as possible, there are some

aspects which cannot be compromised when it comes to leaving something in a water source for

extended periods of time. No corners can be cut when it comes to avoiding environmental

impact, whether it be from materials leaching chemicals, the equipment interfering with local

14

wildlife, or the entire system breaking under expected conditions and littering its parts into the

water.

Furthermore, there is also a large social implication of widespread, autonomous

submersibles. This distinguishes our submarine from those on the market, and the impact they

have due to a limited customer base; users will not only include research teams and local

governments, but individuals as well. This will increase public education about our world’s

oceans and water bodies, as well as their limited resources, and promote a greater societal

attitude towards environmental consciousness. Widespread submersibles in society also create

another mechanism: active monitoring. A submarine (or flock of submarines) can operate

autonomously, thus many applications may include constant monitoring of a water body. Any

deviations from reasonable water conditions will be discovered quickly, such as a HAB, and can

be dealt with before the situation becomes untenable. In situations where public health is at risk,

such as increased radiation levels, this active monitoring may mean the difference between a

small cleanup and a pandemic. Increased submarines available at the consumer and education

level will allow for many issues, often dangerous, to be dealt with quickly and lead to a more

proactive society.

Design Requirements

This system is being designed with the aim of its use within a flock. While aspects of its

functionality are chosen specifically to allow for this behavior, the specifications in the scope of

this design report represent our expectations of not having a final product with full flocking

capabilities within the timeline of this project. To better visualize, a block diagram of

15

functionalities can be found below, where high level functionalities are at the top (in blue), and

low level functionalities are at the bottom (in black).

Fig. 1. Functionality tree

High level functionalities are marketable, and in this project they include exploration,

point-to-point travel, and flocking. These functionalities depend on several low layer

functionalities working together; for example, point-to-point travel requires GPS and IMU

peripherals, and 3D motion. Due to time and budgetary constraints, several of these high level

functionalities may not be tested or fully implemented by the end of this project (i.e. flocking

would require many identical subs be manufactured, which is not financially feasible).

Therefore, the goal of this project is to demonstrate a functional proof-of-concept for a system

that would be able to accomplish these high level functionalities, and for development, low-level

functionalities are implemented that these behaviors depend on.

In an attempt to ensure that our project is applicable to the sector it is being designed for,

we held an ideation session at the start of the design process. This involved collecting and

collating use cases for an AUV, then sorting them as a function of importance to the consumer

and how widespread the specific use case is. These results were then analyzed, condensed, and

16

repeatedly sorted through until a set of design parameters were generated with the goal of

maximizing usefulness to the prospective customer. Further information on this process is

available in Appendix A. The design requirements detailed in this report only cover the aspects

that the computer and electrical team are directly involved in the design of.

The most important requirement of this system is that any environmental impact is

mitigated. This means that the AUV must exhibit robustness and durability to avoid breakage

and therefore contamination of the local environment. Most of the requirements to fulfill this

need falls on the side of the mechanical engineering team, though ensuring that the AUV has the

capability to keep itself out of dangerous situations is an interdepartmental effort. To be able to

do this, the foremost requirement is that the AUV is able to translate itself in 3D space, which is

a boolean requirement; it either can or cannot. A highly related requirement is the ability to

translocate to a designated set of coordinates. The selected range for this to be considered

successful is within 5 meters of the point. While this may seem like a wide region of error, it

must be considered that this device will be acting on the scale of lakes, oceans and rivers. If the

device can translocate to a point, it must also be able to hold its position within said range of that

point for at least 5 minutes.

Another important factor for avoiding environmental impact is avoiding collisions

between the AVU and other objects, not only to protect the AUV, but to protect whatever it has

the potential to collide with as well. To avoid objects, the AUV must be able to detect them at a

minimum range of 1.5m. As the AUV may not be the object that is moving in this situation, it

must be able to avoid an oncoming collision at a relative velocity of 1m/s from the time the AUV

was detected. To be able to react quickly in situations like these, the AUV must be able to

17

accelerate itself to its maximal velocity at at least 1 . For it to be able to handle and remove/sm 2

itself from currents, the AUV will need to be able to travel at least at 3​m/s. ​If an obstacle is

detected and avoided during point to point travel, the AUV must continue to the designated

point.

For the AUV to be able to provide useful sensor data, it must be able to traverse a

designated area, staying within the region, and passing over all parts of the area evenly e.g. not

simply containing its exploration to a corner of the zone.

The chosen method of communication is wireless optical transmission/reception.

Pertinent specifications for any communication system include Bit Error Rate (BER), minimum

transmission distance, and data rate. Additionally, turbidity is included as optical communication

capabilities can largely vary with clarity. These factors are all closely related, thus the

requirement will include them all in a single scenario: At a turbidity of 10 NTU, the AUV must

be able to communicate optically at a distance of 0.5 meters at a data rate of 62.5 bps with a BER

of 10% or less.

A value of 10 NTU was found to the average during low-flow periods in rivers and lakes,

where this sub will be tested experimentally . Both BER and distance were estimated from a set 11

of tests run on an underwater optical communication system in various turbidity conditions . 12

Finally, the data rate was calculated from early tests run with optical components, described in

the ​Preliminary Testing Results​ section, and a communication protocol. While the

11https://www.fondriest.com/environmental-measurements/parameters/water-quality/turbidity-total-suspended-solids
-water-clarity/
12M. E. G. Mital ​et al​., "Characterization of underwater optical data transmission parameters under varying
conditions of turbidity and water movement," ​2017 5th International Conference on Information and
Communication Technology (ICoIC7)​, Malacca City, 2017, pp. 1-6.

18

https://www.fondriest.com/environmental-measurements/parameters/water-quality/turbidity-total-suspended-solids-water-clarity/
https://www.fondriest.com/environmental-measurements/parameters/water-quality/turbidity-total-suspended-solids-water-clarity/

communication modulation technique is not yet set in stone, a clocking pulse-position

modulation (PPM) scheme is being seriously considered and is used for this calculation.

Fig. 2. Timing diagram of the PPM protocol

PPM is an encoding technique that modulates the time since the last clock pulse before

transmitting a high pulse as a means of communicating data. For example, in a 15 ms period, a

delay since the last clock pulse of 5 ms may indicate a ‘0’ and a delay of 10 ms may indicate a

‘1’. This method allows for the detection of errors in a noisy channel by utilizing a fixed set of

known locations a pulse must be at any given clock cycle. If pulses are not in the correct position

within a clock cycle or are not the correct pulse width, then an error is detected. Except for the

unique case in which an error both erases the original pulse and creates a pulse in another

allowable pulse location, errors should be easily detectable.

19

Fig. 3. Illustration of PPM clocking

This protocol, however, does not provide a method for synchronization. That is, the clock

at the receiving end may be out of phase, faster or slower than the clock at the transmitting end

and thus the actual time since the last clock pulse is compromised. To account for this, clocking

can be implemented by sending a pulse at the beginning of every clock cycle, as illustrated

above. Blue pulses represent data, green dashed lines represent the start of clock cycles, and red

pulses represent the pulse at the beginning of every clock cycle. The receiving end can use this

periodic clocking pulse to establish the beginning and end of every cycle and stay synchronized

with the transmitter.

Returning back to the data rate, a single clock cycle of PPM consists of four block times

for encoding a single bit per cycle: the time for a clock pulse, an intermediate period between

pulses, the time for a data pulse indicating a bit of 1, and another intermediate period between

pulses. In Fig. 3 above, there is space for two data pulses and thus two bits can be transmitted

every clock cycle. The block time used here is 4 ms, the minimum pulse period found for an

early prototyping for a white light optical system as described in ​Preliminary Testing Results​.

20

Using a minimum pulse period and intermediary period between pulses of 4 ms, the data rate R

can be computed as .1 bit)/(4 blocks 0 seconds) 2.5 bpsR = (* 4 * 1 −3 = 6

While many of the aspects of this requirement are not necessarily numerically

quantifiable, one of the largest design requirements is that the AFµS system is as consumer

facing as possible. This means making sure its features suit those that could be needed by the

people of whom the specific functionality of the system is useful. These requirements are the

addition of the modular sensor bay, ensuring that the final design is ergonomic enough to be

easily deployed and retrieved, the ability to passively recharge itself, and that its price point is

affordable for individual researchers, with the explicit goal of a sub-$500 product.

Design Alternatives

Communication

Besides waterproofing and pressurization, communication has historically been one of

the largest hurdles to overcome when it comes to underwater vehicles. A variety of solutions

have been implemented through the years in which active underwater exploration has been in

vogue, though each has its own set of advantages and disadvantages.

The simplest of these solutions is running a physical wire between the transmitter and

receiver. This has the benefit of being an extremely reliable method for data communication, as

there is a provided transmission medium with favorable characteristics. The drawbacks of this

system are due to having a physical connection between the transmitter and receiver. Not only

21

does this limit the distance they can be apart, but it also adds significant mass to the system, and

measures to ensure that the line does not get caught or tangled need to be taken.

Though radio frequencies are one of the most prominent methods of communication in

the 21st century, these signals attenuate extremely rapidly in water as a factor of their frequency.

Several AUV systems, such as the Hydromea Exray , have implemented radio communication 13

systems. To accommodate the attenuation factor, these AUVs need to utilize high powered

transmitters and high quality receivers to get a relatively low range signal (~10m). Further

ranges have been achieved by using extremely low frequency signals, though this requires very

large antennas and results in a drastically slowed bitrate compared to higher frequencies, as can

be inferred via the relationship between frequency, period and wavelength in a known medium.

As sound travels better in water than it does in air, it is one of the more widely used

aquatic communication methods, such that the U.S. Navy has a communication standard called

JANUS . This method by far has the best range characteristics as a ratio of form factor, though 14

it comes at the cost of extremely low bitrates. The frequencies that do best in water are below

100kHz, and effective range only increases as the frequency goes down. This limitation means

that even if the data being transmitted had no encoding, the highest possible data rate in this

frequency range is 50kbps. Another factor is that because sound travels so well in water, the

background level of noise is higher for this across a wider range of water than any other

communication method. This means that it is often the case that complex encoding schemes or

purposeful information redundancy is required to account for higher BERs (Bit Error Rates) in

this communication channel, slowing the bit rate even further.

13 ​https://www.hydromea.com/exray-wireless-underwater-drone/
14 ​http://www.januswiki.com/tiki-index.php?page=About+Janus

22

https://www.hydromea.com/exray-wireless-underwater-drone/
http://www.januswiki.com/tiki-index.php?page=About+Janus

Similar to radio, light attenuates quite quickly in water, however, it has the advantages of

not requiring hardware anywhere near as large or power intensive as radio transmitters to get a

similar range. With the ubiquity of LEDs during this age, this is also a very frugal

communication implementation. However, clear line of sight is a lot more important for optics

than it is for radio, and impairments such as highly murky water or seaweed can affect light

propagation to a much higher degree than radio waves. Similar to acoustics, there is a large

amount of background noise in this medium, though the deeper the AUV goes, the less light

from the surface there will be. Unlike acoustics, light travels very quickly, and the wavelength is

nominally small, so very high bit rates can be achieved, albeit only over small distances.

As affordability is a key design requirement, and as communication is not vital for the

AUVs navigation or base functionality, we decided to utilize optics, limiting our required

communication range to 1.5m, but allowing for rapid transfer of information.

The “optimal” wavelength for this application should be established. Keeping in mind

that the proposed audience for this product will be small research groups, local governments and

colleges/universities, it is imperative that its widespread applicability be maintained. While

lower wavelengths (~500nm, blue) attenuate less in ocean bodies, slightly higher wavelengths

(~600nm) show less attenuation in more turbid conditions found in coastal waters , where this 15

sub will be tested initially, and still boast relatively low attenuation is ocean bodies. The

wavelength chosen for this application is 567nm (lime). Hence, range may be reduced but

usability in a variety of environmental conditions is preserved.

15 Johnson, L. J., Jasman, F., Green, R. J., & Leeson, M. S. (2014). Recent advances in underwater optical wireless
communications. Underwater Technology: International Journal of the Society for Underwater, 32(3), 167–175. doi:
10.3723/ut.32.167

23

As with any communication system, transmitting and receiving elements are both needed.

For transmission, viable options include laser diodes and high power LEDs. As discussed in the

Design Requirements​ section, omni-directional optical emission is desirable, as well as low

power draw. Laser diodes provide high switching speeds, however they are sharply limited in

range, temperature stability, and require specialized circuitry to compensate for environmental

factors . While LEDs cannot switch as fast as laser diodes, they offer greater beam divergence, 16

resilience, and as mentioned before, come at a much lower cost. Therefore LEDs were chosen as

the component for transmitting optical signals.

For optical reception, the choice is not so linear. Viable options include photoresistors,

phototransistors, and photodiodes. Beginning with the most commonly known component,

photoresistors exhibit different resistances over different light levels in a fairly linear

relationship. However, photoresistors can take anywhere from a few milliseconds to a few

seconds to return back to a dark state after being exposed to light, which is not reasonable for a

communication link. Phototransistors are essentially typical bipolar or field-effect transistors

with their base/gate exposed to the light source. Therefore they exhibit a current gain and

collector-emitter voltage proportional to the light level they receive. Phototransistors offer high

robustness in the presence of noise, and can switch at a moderately fast rate (=< 250 kHz).

Photodiodes are components that convert light energy into electrical current. These components

are very fast, capable of switching in the MHz region, relatively hardy to ambient noise, and are

very affordable. However, as this component produces current, extra circuitry is required to

16 Brundage, H. (2010). Designing a wireless underwater optical communication system. Mechanical Engineering -
Master's Degree. Retrieved from http://hdl.handle.net/1721.1/57699

24

convert that current into a voltage level, such as a transimpedance amplifier, so it can be

processed by the SBC.

A phototransistor was chosen for this application. While photodiodes display more

desirable traits pertaining to performance, they are also capable of receiving optical signals from

similarly powered LEDs over distances of 10 meters or more, which is beyond the requirements

for this application. The design, testing and refinement of a transimpedance amplifier may also

take a large amount of time to complete, which is not preferable when considering the time

constraint of this project, and complicates the hardware requirements. Finally, as the expected

data rate as described in the ​Design Requirements​ section is in the range of Hz as opposed to

kHz, the good noise robustness and far simpler circuitry which the phototransistor offers makes

it a suitable choice for this application.

Methods of signal modulation include using an ADC and extracting the data through

software, and using a comparator circuit. Based on what ADCs exist within our price point, the

selection may place another limit on the maximum data rate achievable, equal to half its

maximum sampling rate, while delays in a comparator circuit are on the order of nanoseconds

and are thus negligible. A comparator circuit will be implemented and tested first, followed by

alternatives if necessary.

Power

The energy reserve of this system will physically vary in size according to the available

space in the vessel. The battery chemistry is selected based on which chemistry type offers the

greatest energy density. Lithium-ion (Li-ion) and Lithium-polymer (Li-Po) batteries lead in this

25

respect, compared to options such as Nickel-Cadmium (Ni-Cd) and lead acid . Due to 17

widespread adoption of portable, rechargeable technological devices over the past several

decades, these batteries are also available for a low price point.

The other consideration to incorporate is the number of cells to use in series and parallel.

Increasing the number of batteries in a parallel configuration increases the maximum current

draw of the array and the overall capacity. Again, this will be limited to the available space in the

vessel. The number of cells for the series configuration modifies the efficiency of the buck-boost

voltage regulators, and the speed that the motors can spin at as they are powered directly from

the battery. Based on early PID tests described in the ​Preliminary Testing Results​, a low RPM

value is desirable for finer control and the greatest source of potential inefficiency in voltage

regulation lies with the component that will be regulated continuously: the SBC. As SBC’s are

typically powered off of 5 V, the series configuration chosen was 2S, or a nominal voltage of 7.4

V.

Processing

For the computational requirements of this system, the final performance has yet to be

seen. The ATS Mk. 1 incorporates the Raspberry Pi 3B, and this SBC will be used until the

computation requirements exceed its specifications. This SBC has 1GB of RAM and a quad-core

processor with clock speeds up to 1.2 GHz. As more real-time systems are developed and

integrated, CPU performance tests will be run to ensure delays are not beyond reasonability.

Raspberry Pi’s have the benefit of low cost, a massive community base, a plethora of third-party

17 ​https://circuitdigest.com/article/different-types-of-batteries

26

https://circuitdigest.com/article/different-types-of-batteries

software libraries, and backward-compatibility. These features will allow us to implement

functionalities with existing libraries rather than creating them ourselves, which is highly useful

considering the time constraints of this project. Hence, if the computing requirements of the 3B

is not sufficient at greater offered load, the newly minted Raspberry Pi 4B (up to 4GB DDR4

RAM/quad-core processor up to 1.5 GHz) may be a viable option, and if not then an SBC with 18

superior computational characteristics such as the ASUS TinkerBoard S (2GB DDR3

RAM/quad-core processor up to 1.8 GHz/integrated graphics processor up to 650 MHz) will 19

also be considered.

Sensing

Movement

The most common method of motion detection for autonomy applications is GPS. GPS

will provide the devices specific coordinates via satellite triangulation as long as the device is not

in a region where there is enough attenuation that communication with the required number of

satellites is impossible. Due to this stipulation, GPS does not work particularly well under water,

and can in fact only function directly below the surface or else the attenuation factor is too great

to provide accurate data.

Another method of motion detection, which has recently started to gain traction and

practicality, is called optical flow. This uses a camera to determine velocity based on the rate at

18Raspberry Pi 4 Model B specifications – Raspberry Pi. (n.d.). Retrieved from
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/.
19Tinker Board S: Single Board Computer. (n.d.). Retrieved from
https://www.asus.com/Single-Board-Computer/Tinker-Board-S/.

27

which pixels travel across the optical sensor. This method only works if there is a

non-monochrome surface for it to be pointed at, and enough light for the sensor to be able to pick

up the surface. While this would likely work in very shallow clear water, it would provide little

functionality in water deep enough that the optical sensor cannot detect the floor.

A sensor called an IMU, or Inertial Measurement Unit, can be used to get motion data as

well. This sensor reads in acceleration and orientation data, which can be utilized to calculate the

velocity and displacement of the device. Unfortunately, all but the extremely expensive IMUs 20

have intrinsic noise and error in their readings that accumulate with the calculations of velocity

and displacement, making this a very imprecise solution.

A method especially suited for underwater use is having a set base station which can be

used to reference distance from the station to the device. This usually works by having the base

station emit a signal that the AUV can use to calculate its distance and position in relation to the

station . This adds the need for a station to be placed in every location the AUV will be utilized 21

in, limiting effective range and use cases significantly.

A sensor called a DVL, or Doppler Velocity Log, is commonly used on human scale 22

vessels, though modern technology has allowed the size of these sensors to decrease over time,

making it possible to have them on smaller systems. This sensor uses three or more transducers

to generate acoustic waves while under motion, and measures the doppler shift in frequency

upon return of the signal. These sensors remain quite large and expensive relative to the other

options at the moment.

20 ​https://aerospace.honeywell.com/en/learn/products/sensors/hg1700-inertial-measurement-unit
21 S. M. Smith and D. Kronen, "Experimental results of an inexpensive short baseline acoustic positioning system for
AUV navigation," ​Oceans '97. MTS/IEEE Conference Proceedings​, Halifax, NS, Canada, 1997, pp. 714-720 vol.1.
22 J. Snyder, "Doppler Velocity Log (DVL) navigation for observation-class ROVs," ​OCEANS 2010 MTS/IEEE
SEATTLE​, Seattle, WA, 2010, pp. 1-9. doi: 10.1109/OCEANS.2010.5664561

28

https://aerospace.honeywell.com/en/learn/products/sensors/hg1700-inertial-measurement-unit

For this project, we determined to attempt to utilize both an IMU and GPS module. The

GPS module will function while the AUV is on the surface, and once the AUV submerges, it will

utilize the less accurate method until it recalibrates on the surface.

The modern GPS modules available on the market in the <$75 price range, such as the

SAM-M8Q, MT3339 and NEO-6M/V, all have similar sensitivity (~-162dBm) as well as similar

power characteristics. The SAM-M8Q has the ability to connect to multiple constellations, and

the Matek SAM-M8Q GPS Module breakout keeps a very low form factor and provides UART

connection capabilities. This breakout has been selected to be the one used in our AUV.

Water Sensors

As there is a large variety in the type of information that researchers are interested in

collecting , it was determined that the most accommodating solution would be to simply 23 24 25

provide a bay in which water sensors to suit the individual researcher's needs could be used.

Local Awareness

There are several options for detecting objects in the local of a device. The simplest to

implement is a physical sensor. In the case of an AUV, this would be a system of switches or

pressure sensors around the exterior of the hull, which would alert the AUV of any direct contact

with external objects. This is very low level, and therefore has the advantage of being able to use

minimal hardware and processing to determine collisions.

23 ​https://www.ysi.com/products/aquaculture-process-monitors-and-sensors
24
http://news.mit.edu/2018/fundamental-equations-guide-marine-robots-optimal-sampling-sites-0510#separator-comm
ents
25 ​https://peerj.com/articles/1770/

29

https://www.ysi.com/products/aquaculture-process-monitors-and-sensors
http://news.mit.edu/2018/fundamental-equations-guide-marine-robots-optimal-sampling-sites-0510#separator-comments
http://news.mit.edu/2018/fundamental-equations-guide-marine-robots-optimal-sampling-sites-0510#separator-comments
https://peerj.com/articles/1770/

Acoustic rangefinders are a common method of not only detecting an object, but

detecting how far away it is. These systems are often used both on land and in water, though the

specifics of the hardware differ based on medium. For this system to work, the object being

detected must reflect the acoustic signal instead of absorbing it.

A similar functionality exists with the use of infrared. IR range finders can detect how far

away an object is from itself, though only as long as the object reflects infrared. Due to the

attenuation of this wavelength in ocean water, as can be seen in Fig. 4, this would not be the

ideal solution for underwater purposes (Infrared falls in the ≥700nm range).

Fig. 4. Relationship between attenuation and wavelength in oceans. 26

26 J. Sticklus, P. A. Hoeher and R. Röttgers, "Optical Underwater Communication: The Potential of Using Converted
Green LEDs in Coastal Waters," in IEEE Journal of Oceanic Engineering, vol. 44, no. 2, pp. 535-547, April 2019.

30

As minimization of environmental impact is one of the most important requirements on

this project, any solution which involves direct contact with detected objects is not conducive to

our specifications. Due to the attenuation factor in infrared sensing, acoustic sensing was

determined to be the best option.

To accomplish this task, there are several ways to approach the problem. The first being

the usage of completely off the shelf components, which has the advantage of minimal

implementation time, and higher performance than could likely be achieved from scratch in the

alloted time period. Unfortunately, all commercially available solutions have significantly

greater functionality than required, and have price points and physical sizes to match. An

alternative would be to purchase an off the shelf part designed to function in air, which would be

significantly more available in the range of functionality price and size that we are looking for,

and modify it to work in water. Though, due the physical differences in water and air, a large

amount of modification would be required, and there is very little information available on the

effectiveness of this. Eliminating the previously mentioned methods leaves the options based

around the design and construction suited to our needs. For this, the options are to either

purchase transducers designed for aquatic usage, or to construct a custom transducer to suit the

design requirements. As the commercial availability of transducers that match the needs of this

system is not prolific, it was determined that the feasibility of making custom equipment would

be explored only to the point it was deemed impractical to pursue.

For acoustic signal generation, a transducer is required, which is a component that

converts electrical signals to physical motion. Due to how well they are suited to the task,

31

piezoelectrics seem to be the only standard method of making acoustic transducers. The method 27

for unidirectional sonar purposes uses flat piezo elements sandwiched between two layers. One

layer is the impedance matching layer, which should have an acoustic impedance half way

between the piezoelectric’s and transmission medium’s impedances. The optimal thickness of

this layer is debated to either be one quarter wavelength of the resonant frequency of the piezo , 28

or half the thickness of the piezo itself . Tests are planned to compare the performance of each 29

of these methods. The other layer is required to be “immovable”. That is, when the piezo is run

at a frequency, making it contract and expand, the impedance matching layer should be

producing the maximal amount of motion, while the other side is as relatively stationary as

possible. As previously noted, acoustic waves travel furthest in water under values of around

100kHz, with the lower the frequency the better. A graph of this phenomena can be seen in Fig

27 ​https://en.wikipedia.org/wiki/Piezoelectricity
28 (n.d.). Retrieved from
https://www.nde-ed.org/EducationResources/CommunityCollege/Ultrasonics/EquipmentTrans/characteristicspt.htm.
29 Butler, J. L., & Sherman, C. H. (2018). Transducers and Arrays for Underwater Sound. Cham: Springer
International Publishing.

32

https://en.wikipedia.org/wiki/Piezoelectricity

5.

Fig. 5. Relationship between attenuation and frequency in oceans. 30

This provides a wide range of options for the frequency selection of the AUVs transducers​.

Based on availability and price point, a selection of waterproofed transducers were ordered, with

their resonant frequencies falling between 2.8kHz and 5kHz. These values are on the lower end

of the usable range, with the initial intention of having a high range that could be applied to the

potential of acoustic communication. The main drawback of using said range is the length of a

30 Ainslie M. A., McColm J. G., "A simplified formula for viscous and chemical absorption in sea water", Journal of
the Acoustical Society of America, ​103​(3), 1671-1672, 1998.

33

single period in the transmission medium, as the longer this is the more it could overlap with

other data, though the extent of this as an issue will be explored through testing

To transmit acoustic signals, the piezo devices produce higher amplitude waveforms at

higher voltages. As the sensitivity of the receiving methodology plays a large factor in the

required amplitude of the received signal, the requirements for the driving voltage will be

dynamically determined through testing.

There are several options for processing the received acoustic signals. The raw data will

be analog AC voltage, which contains all vibrations imparted on the piezoelectric, not just the

ones which contain information from the other AUVs. The first option is to run the signal

through an ADC and perform the processing on the SBC. This has the disadvantage of increasing

SBC load, but it also means that there is minimal hardware required to read in this data. An

alternative to this would be to implement a daughterboard to the SBC which contains analog read

in capabilities, and would perform all of the processing before passing the final data to the SBC.

If the data is to be processed beforehand, a filter is required. Though the signal may

experience some frequency distortion, it will still approximately be the same as the piezo’s

resonant frequency. To remove background noise, a bandpass filter, which allows a specific

frequency range to pass through, will be required. This signal, which would now ideally only

contain the amplitudes of signals received in the exact frequency range of the transmitted waves,

could then be fed through an ADC to the SBC for further processing. This method has the

advantage of removing a portion of the processing requirements while maintaining information

about how strong the received signal was. However, in the situation where there is noise within

34

this frequency range, there would still be a good amount of processing required to detect and

extract the features of the actual data.

An alternative to this would be to replace the ADC in the previous configuration with a

comparator, such as the LM311P, which would have a set threshold, and if the received signal is

above said threshold, a digital 1 would be output to the SBC. This would effectively directly

convert from the received AC signal to digital data in hardware, removing all significant

processing from the SBC. This has the drawback of losing amplitude information, which could

be used to extrapolate location information or to algorithmically reject certain types of data based

on its characteristics.

There are a lot of ways that sound waves can be distorted in water, and a primary concern

is multipath, where the signal ends up bouncing off of various surfaces, concluding in the same

transmission reaching the receiver across a range of times. The signal can also bend, shift

frequency, or heavily attenuate, and we have yet to perform the testing which will inform us of

how these problems will need to be approached, which guide how to optimally decide the

hardware configuration.

Movement

Several propulsion methods were explored by the mechanical engineering team, and as

the control of thrusters is an interdepartmental effort, the choice of methodology affected the

electrical design.

The options were determined to fall within two categories; Biomimicry or propellor

based systems. Biomimicry, or the copying of methods used by organisms, has been a subject of

35

interest in the development of AUVs . A large amount of this research shows that these 31 32

propulsion methods are highly efficient, which suits the needs of this project. However, these

methods require a large number of complex moving parts, which reduces the robustness of the

system. The thrust vectors produced by biomimicry options are also significantly less controlled

than traditional propellor based propulsion methods, and due to these limitations, the mechanical

engineering team chose to pursue the propellor based path in the interest of having a functional

product within the designated time frame.

Traditional propellers, with the blades extending outwards from a central axel, have a

significant amount of data collected on their characteristics, and therefore designing them to

match a performance is relatively simple. However, when it comes to their actual usage for an

AUV of this scale, there are a large number of drawbacks that show up. The foremost is the

tendency of this prop type to get caught up in seaweed, line, or any other fibrous free floating

material. Having the blades externally facing also provides the opportunity for the harm of

wildlife , which violates one of our design requirements. 33

To solve this, Alex Pradhan, a member of the mechanical engineering team, designed a

hubless rim driven propellor with hydro lubrication. This has the advantage of being significantly

more difficult to tangle, and not having potentially harmful elements directly exposed. Alex

worked with Xavier to write an optimization algorithm for the blade characteristics, and

31 ​Fish, F.E.; Schreiber, C.M.; Moored, K.W.; Liu, G.; Dong, H.; Bart-Smith, H. Hydrodynamic Performance of Aquatic
Flapping: Efficiency of Underwater Flight in the Manta. ​Aerospace​ ​2016​, ​3​, 20.
32 ​Font D, Tresanchez M, Siegentahler C, et al. Design and implementation of a biomimetic turtle hydrofoil
for an autonomous underwater vehicle. ​Sensors (Basel)​. 2011;11(12):11168–11187.
doi:10.3390/s111211168
33 ​https://www.nationalgeographic.com/animals/2019/07/north-atlantic-right-whales-mass-mortality/

36

https://www.nationalgeographic.com/animals/2019/07/north-atlantic-right-whales-mass-mortality/

production and testing of the thruster will be performed in 2020. A CAD model of the design can

be seen below in Fig. 6.

Fig. 6. CAD model of hubless rim driven thruster

While the required characteristics of the motor are not yet known, the motor selection can

be narrowed down based on suitability for our requirements. The types of motors that are easily

accessible within this size range and are able to provide speeds high enough to fall in the

predicted range of thruster requirements are DC brushed motors or brushless outrunners.

37

Brushed motors utilize brushes to generate and alternating current in the rotor, where

permanent magnets induce electromagnetic force on the rotor, causing it to rotate at a velocity

proportional to the input voltage. Due to the constant contact between the spinning rotor and the

brushes, brushed motors are extremely prone to failure due to wear. As the brushes are live

contacts, any introduction of water to the interior of the motor would result in immediate

termination of its functionality,

Brushless motors utilize 3 coils provided with a 120° phase offset AC voltage to induce a

rotational velocity proportional to the input frequency from the magnets positioned on the rotor.

As there is no direct contact between the stator and the rotor anywhere besides the bearings,

there is very little wear on these motors over time. As the coils are insulated, these motors are

also able to function while submerged as long as the connection to the ESC is waterproofed.

Due to their increased lifespan and suitability for aquatic usage, we have determined

brushless motors will be used for the final thruster. Depending on the predictability of the

thruster characteristics, an encoder may be included with the motor to get direct feedback on

rotational velocity to ensure synchronization of thrust. This will be determined based on the

results of preliminary thruster testing.

Preliminary Proposed Design

As there are so many interlinking aspects that will need to function in conjunction for the

final system to work as designed, a minimum viable product approach is being used for the 34

development of the system. This means that versions of the system which are able to represent

34 ​https://en.wikipedia.org/wiki/Minimum_viable_product

38

https://en.wikipedia.org/wiki/Minimum_viable_product

minimal subsets of the final systems’ functionality to allow for testing before implementation

into the next iteration. The scope of this project has been divided into three different iterations,

referred to as the MKI through MKIII. The MKI is designed to exhibit 2D motion in water, and

provides a testbed for motion sensing and navigation code. The MKII has the addition of

communication and 3D navigation capabilities, allowing for testing of a significantly greater

functionality. The final iteration will implement all aspects and components as designed by the

mechanical engineering and computer/electrical engineering teams.

The software and hardware aspects of design for this project will be examined in two

separate sections.

39

Hardware

Fig. 7. Hardware Block IO Diagram

There are five main blocks in the hardware design: Communications, Movement, Power,

Processing, and Sensing. Each of these blocks are described in detail below.

40

Communication block

Fig. 8. Hardware IO diagram for Communications block

The Communications block is responsible for sending and receiving all inter-sub

messages. While this block is not expected to form these messages, and in fact is expected to

treat all messages agnostically, it handles all physical transmission and reception of both optical

and acoustic signals to the degree that it can be digitally processed by the SBC. This section is

divided into two subsections: Acoustics and Optics, which details the internal structure of the

two methods for communication.

For transmitting optical pulses, an n-channel MOSFET transistor circuit will be used in a

switching application to drive a high power LED. The high power LEDs used here are 3 W

Power LEDs with a viewing angle of 120 degrees, a maximum current draw of and aAI = 1

forward voltage of . A thorough justification of this implementation can be found in theVV f = 3

Design Alternatives​ section. A diagram for this circuit is shown below.

41

Fig. 9. Optical emitter transistor switching circuit

The transistor used in this application will be a power MOSFET with a high continuous

drain current, made necessary by the draw characteristics of the LEDs. As mentioned in the

Design Requirements​ section, omni-directional optical emission during transmission is desirable,

so a single MOSFET with a maximum continuous drain current greater than the current draw of

multiple power LEDs running simultaneously would simplify circuitry and keep the price low.

As this MOSFET will be driven by a GPIO pin of the SBC (3.3 V), a single MOSFET would

also prevent potential draw issues at the gate, as opposed to multiple MOSFET gates connected

to a single GPIO pin. The transistor chosen for this application is an IRLB8721PbF MOSFET,

which has a continuous drain current I_D = 62 A, max drain-to-source voltage V_DS = 30 V,

gate threshold voltage V_GS_th = 1.8 V, drain-to-source resistance R_DS_on = 8.7 mΩ, and

switching delay times in the tens of nanoseconds.

42

In ​Fig. 9​, R_g is implemented to reduce buzzing at rising/falling edges during switching.

The value of R_g will be kept small in order to prevent the consequential RC delay (from R_gate

and C_gate-source) from limiting the overall switching speed of the system.

R_gs is implemented to ensure that noise and stray internal capacitances, often known as

“Miller Capacitance”, do not accidentally turn the gate on. This is especially necessary in high

frequency switching applications.

R_d will be used to limit current draw from V_ss. Due to the LEDs low forward voltage

of V_f = 3 V, V_ss can be the low voltage of 5 V, as discussed in the Power block section.

Therefore, the optimum R_d value for I_d = 1A is ..7mΩ .99ΩRd = 1 A
5V −3V − 8 = 1

For receiving optical pulses, a 570nm phototransistor will be utilized. A full justification

for this choice can be found in the ​Design Alternatives​ section. A diagram for this circuit is

shown below.

Fig. 10. Optical receiver circuit

43

 The common-collector circuit consists of a phototransistor and a resistor in series, with

V_out = V_R. When light is present and the phototransistor is saturated, it has a very low voltage

across the collector and emitter. When light is absent, it has a higher voltage. V_out will feed

into a comparator circuit, which will output a logical 1 for the microcontroller when a strong

enough signal is detected by the phototransistor. Through empirical testing, the optimal threshold

voltage will be determined and implemented into the comparator circuit

The value of R will be selected according to how sensitive the circuit must be to different

light levels. The phototransistor used in this application is an SFH 3310 570nm NPN

phototransistor, with V_CE_max = 5.5 V and I_CC_max = 20 mA. With V_ss = 5 V, the

minimum resistor value is . However, this condition is only reached at full50ΩRmin = 5V
20mA = 2

saturation, which may not ever be reached in this application. Therefore the final value of R will

reflect the maximum saturation that can be reached.

Power block

Fig. 11. Hardware IO Diagram for Power block

44

The Power block is responsible for powering all active components in the system, and for

generating power renewably while away from a charging station. The power reserve will be

some configuration of common off-the-shelf batteries with a single cell voltage of around 3.7 V,

therefore requiring that step-up and/or step-down regulators be used to provide at least two

distinct voltage levels: one of a relatively low voltage (~5V) for powering the numerous

low-power components, and one of a relatively high voltage (~30V) for driving piezoelectric

transducers.

The battery will have a nominal voltage of 7.4 V, also known as a 2S configuration. The

SBC will need to be continually powered during any given mission, so selecting a nominal

battery voltage close to the actively regulating voltage will minimize power loss. Using a lower

nominal voltage will also lessen the power consumption from the motors. The mechanical

engineering team working on this project have implemented a helical gear train calculator in

their ongoing thruster design with a modifiable gear ratio, meaning that thruster speed and torque

can be tuned mechanically. With driving high performance motors, active voltage regulation and

periodic high current draw from communicative components, the battery must boast a high

maximum continuous current draw and decent capacity. Therefore the battery will include

several individual batteries in parallel, creating a 2S​x​P configuration. The final value of ​x​ will be

determined by the available space in a single sub. Please refer to the Movement block section for

more information regarding motors and the Communications block section for more information

regarding communicative components.

The step-up regulator will provide a high voltage level for the piezoelectric transducers to

be driven off of. Generally speaking, AC waves produce greater displacement in a piezoelectric

45

transducer when higher voltages are utilized, meaning that a high driving voltage is needed to

send acoustic waves over large distances. For more information about transducers, please refer to

the Communications block section. The implementation for this regulator will be a boost

switching converter, ideally with high efficiency ratings and low latency. As this regulator has a

single relatively-stable load, large continuous current ratings are not required.

The step-down regulator will provide a low voltage level for the SBC, IMU module, GPS

module, optical driving circuit, and all active filters/amplifiers. The regulation for this voltage

will be continuous as discussed before, however the load will largely vary; driving circuits will

draw power periodically and in bursts, and filters/amplifiers will be similarly pulsed. Therefore,

it is important that this regulator has a high current rating and handles under non-linear

conditions. The exact current draw will be dependent upon the total number of LEDs used and

other particulars of the system, but may very well be up to 10 amps. The implementation for this

regulator will be a buck switching converter. This use case, being the conversion of some battery

voltage to 5 V, is a common issue in RC circuits. While primary motors are driven at the battery

voltage, other components such as servo motors and the receiver are typically powered off of 5

V. In order to avoid needing to use a second battery for these components alone, a Battery

Eliminator Circuit, or BEC, is used to step down the battery voltage to 5 V for only these

components. Therefore, regulators that can handle nonlinear supply voltages and loads are

relatively cheap, tried, and true.

Finally, the charging circuit will provide a means for some renewable power to be

harvested and recharge the battery. The implementation of this component will be handled by the

46

mechanical engineers on this project. The only requirements for this circuit is that it recharge the

battery entirely, and does so completely renewably.

In an effort to gauge what the power draw might be, calculations of consumption for each

component to be included in this design is performed and provided below. These values are for a

worst-case scenario, the details and justifications of which are provided in the following

paragraphs.

35 ​https://www.pidramble.com/wiki/benchmarks/power-consumption

47

Component Notes Final Power

Consumption (Wh)

SBC -

Raspberry Pi 4B

Overclocked @ max utilization 35 8

Piezoelectric

transducers

With 6 transducers, →00Ω, V 0VZresonant = 3 = 3

, assuming 50% transducers 8WP = V 2

Z resonant
ˆ * 6 = 1

on time → W hE = 9

9 Wh

LED driving

circuit

With 6 LEDs and FET characteristics of ,VV cc = 5

, →AIc = 1 .7mΩRds(on) = 8

, assuming.31WP = (6 LEDs)* Ic
2

* Rds(on) = 0

constant transmission →

.31W .12W hE = P * on time
of f time = 0 * 8

3 = 0

0.12

LEDs With 6 LEDs, , assuming constantWP = 3 6.75

https://www.pidramble.com/wiki/benchmarks/power-consumption

48

transmission → W LEDs .75W hE = 3 * 6 * 8
3 = 6

IMU With IMU characteristics of

→ ,.3V , I 2.3mAV DD = 3 DD = 1 .041WP = 0

assuming constantly on → .041W hE = 0

0.041

GPS With → 9mA, V VIcontinuous = 2 = 3 .087W hP = 0 0.087

Filters/

Amplifiers

With 6 LEDs, 6 transducers, , →VV = 5 mAI = 7

, assuming 50% on2 V mA .45WP = 1 * 5 * 7 = 0

time for transducers and constant transmission for

LED →

.5)) .197W hE = (2
0.45W * 0 + (2

0.45W * 8
3 = 0

0.197

Digitizers With 6 LEDs, 6 transducers, ,.3VV cc = 3

 → ,.5mAI in = 7 2 .3V .5mA .297WP = 1 * 3 * 7 = 0

assuming 50% on time for transducers and constant

transmission for LED →

.5)) .13W hE = (2
0.297W * 0 + (2

0.297W * 8
3 = 0

0.13

ESCs/Motors With , , 5 motors, and 50%.4VV nominal = 7 5AI = 1

on time → , assuming 5 motors and 50%11WP = 1

on time → 11W .5 77.5W hE = 1 * 5 * 0 = 2

277.5

Phototransistor With phototransistor characteristics of 0.04

Table. 1. Power consumption breakdown of all hardware components

For the piezoelectric transducers, 6 transducers are used in this calculation. This provides

sonar readings in all directions of all axes. The possibility of obstacles in all axes is a concern,

but as LED placement is also omnidirectional, this will allow a sub to prevent collisions with

other subs as local awareness is also omnidirectional. The on-time to off-time ratio used here is

0.5, as described in the Sensing block.

For LED driving circuit, 6 LEDs are used in this calculation. As stated in the

Communication block, the power LEDs used in this design have a max current draw of 1 A and a

viewing angle of 120 degrees. Therefore, 6 LEDs allow for omnidirectional visibility. For the

ratio of on-time to off-time in the same category, the communication protocol as described in the

design requirements section (PPM) describes the ratio of on-time to off-time for sending a bit ‘0’

or a bit ‘1’. For ‘0’, the clock pulse is the only on-time, so this ratio is ¼. For ‘1’ both the clock

pulse and the data pulse make up the on-time, so this ratio is ½. Therefore, the average on-time

49

circuit , → ,.5VV ce, max = 5 .02AIc,max = 0 .11WP = 0

assuming constant transmission →

.11W .04W hE = 0 * 8
3 = 0

Piezoelectric

transducer

driving circuit

With 6 transducers, and FET.1AI = 30V
300Ω = 0

characteristics of , →0VV cc = 3 .7mΩRds(on) = 8

,.003WP = (6 transducers)* I
2
* Rds(on) = 0

assuming 50% on time → .0015W hE = 0

0.0015

TOTAL: 301.8665 Wh

to off-time ratio is ⅜. The FET used here is the one selected for this design as described in the

Communication block.

For filters/amplifiers, the exact part selection has yet to be completed for reasons

described in ​Design Alternatives​. For calculations performed above, a universal active filter

similar in functionality to our use case, the UAF42, is used for calculations with specifications

listed in the above table.

For digitizers, a differential comparator as described in ​Design Alternatives​ is used for

calculations. This comparator is used for digitization of both optical signals and sonar readings

due to its wide operating range.

For ESCs/motors, the voltage figure is the nominal voltage for the battery configuration

this design will utilize and the current draw is based on the maximum current rating for the

bidirectional ESCs currently used. The mechanical engineering team was consulted for the

greatest number of motors that may be incorporated in the design, for which the answer was 4. In

this configuration, 2 motors would be used to propel the AUV forward as a tank-drive propulsion

system, and 2 motors would be used to surface and dive the AUV. The average on time assumes

that two motors on the AUV will always be spinning; either the two motors for forward motion,

or the two motors for vertical motion.

50

Processing block

Fig. 12. Hardware IO Diagram for Processing block

The Processing block is responsible for all computational requirements. Therefore its

inputs are all readings from the Sensing block, all digitized incoming communication signals,

and low voltage for powering. It’s outputs are digitized outgoing communication signals and

PWM signals for all motors/control surfaces. For more information about the communication

signals, please refer to the Communications block.

The processing block itself does not have any internal hardware implementations aside

from the SBC. The SBC essentially contains the entire software design, making for a short

conversation in a hardware IO breakdown. A full examination of the IO requirements for this

SBC is provided below, along with a list of all hardware components that the SBC will interface

51

with and their IO. These requirements are based on a worst-case scenario that has been

established in the Power block.

Table. 2. IO breakdown of all hardware components that interface with the SBC

As can be seen above, the overall IO requirements for the SBC include: 11 GPIO pins,

two I2C ports, a UART port, and one more I2C/UART port. As described in the ​Design

52

Block Component I/O Required

Sensing Piezoelectric transducer driver circuit GPIO pin

Sensing Piezoelectric transducer digitizer GPIO pin

Communication LED driver circuit GPIO pin

Communication Phototransistor circuit GPIO pin

Sensing Battery voltage sensor I2C

Sensing IMU I2C/UART

Sensing GPS UART

Sensing Sonar out GPIO pin

Sensing Sonar reading GPIO pin

Sensing Water sensor bay I2C

Movement Motor drivers GPIO pin*5

Alternatives​ section, the current SBC being used is the Raspberry Pi 3B. This SBC has 2x I2C,

2x UART, 2x SPI, and 14x dedicated GPIO pins (that is, not also for I2C/SPI/UART). It should

be mentioned that one of UARTs on the Raspberry Pi is tied to its wireless/bluetooth module

which is used for interfacing with the pi during tests, effectively making this 1x UART. As I2C

can be performed by chaining multiple devices, the water sensor bay I2C channel will be chained

to one of the two I2C ports and properly addressed to ensure that there is no address collision

between I2C peripherals. Therefore, this SBC still has the necessary GPIO to house all

peripherals stated in this design.

For process-based design, please refer to the Software section for more information.

Sensing block

Fig. 13. Hardware IO diagram for Sensing block

53

The Sensing block is responsible for handling all sensory input. This does not include

communication between individual systems. There are five sensing modules involved in this

block: an IMU module, a GPS module, a water sensor module (a bay containing multiple water

sensors), a sonar module, and a battery voltage sensor module. The first four sensing modules

will require power at a low voltage, and the last sensor module will require battery voltage.

The purpose of an IMU module is to provide estimations for velocity and displacement

underwater, necessary for dead-reckoning. A desirable IMU for this application is a 9-DOF

sensor, which includes an accelerometer, capable of providing instantaneous acceleration

readings, a gyroscope, capable of providing orientation and angular velocity, and a

magnetometer, capable of gauging magnetic fields (most commonly, Earth’s magnetic field).

This reports absolute orientation in 3-space and motion estimations in all axes.

Calculating displacement from instantaneous acceleration results in unbounded error

accumulation, spurring the need for some post-processing and filtering on the collected data.

This work is explored under ​Preliminary Testing Results​. After comparing similarly priced

IMU’s, the BNO055 absolute orientation sensor was chosen due to its relatively high accuracy,

configurable sampling rates and onboard sensor fusion and processing capabilities. The second

point was especially poignant, as sensor fusion is a complicated field that would take significant

time to develop and refine (potentially a senior capstone project on its own), and onboard

processing means those computations can be offloaded on the SBC- a desirable trait because

these readings will happen continuously during a mission and the possibility of software delays

due to absolute orientation calculation is abated.

54

The purpose of the GPS module is to reference the sub to a global coordinate frame and

realign all estimated positions from dead-reckoning. This allows for course correction if the sub

accidentally strays from its projected path. For point-to-point travel, GPS will also provide a

means to definitively start and conclude a mission. The SAM-M8Q chipset, selected based on the

criteria outlined in ​Design Alternatives​, was released in 2017.

The purpose of the water sensor module is to generate the underwater data that the user is

interested in, allowing them to choose what sensors best suit their purpose. With the water

sensors that the user decides to equip their sub with, readings will be taken periodically and

timestamped for later post-processing. The water sensor bay will be modular, enabling any water

sensor with I2C capabilities to be attached to the bay. This will allow the user to decide what

factors they care about and implement sensors accordingly. Additionally, this keeps the overall

price lower because expensive sensors won’t be implemented as a default option which might

not be needed at all. In the instance in which a user wants to execute point-to-point travel, they

may choose to omit water sensors altogether.

The purpose of the sonar module is to provide basic information about local surroundings

to the sub. This implementation will be as selected in design alternatives, though the specifics of

the hardware will not be confirmed until preliminary tests are performed. Sonar is a necessary

implementation to ensure that the sub does not contact any walls, floors, or ceilings while

underwater because position estimations may not be fully accurate. To match our requirement of

being able to detect obstacles at a distance of 1.5 meters, the transmission power will be selected

based on the results of our initial acoustics testing. It takes sound to travel a.009s3m
330m/s = 0

distance of 3m. To meet the requirement of being able to avoid an obstacle with a relative

55

velocity of 1m/s, the AUV would have 2​s​- =1.991s of time to negate its relative velocity..009s0

Based on the design requirement of being able to exhibit at least 1m/s of acceleration, this gives

the AUV an overhead of 0.991s to achieve this, as it would reach a negating velocity after 1s.

Sensors will be positioned top, bottom, fore, starboard and port, with the potential for multiple

sensors dependent on the final length of the AUV as determined by the mechanical engineering

team.

The purpose of the battery voltage sensor module is to detect when the battery must be

recharged. This is strictly vital, as a battery voltage below the operating range of the step-down

regulator will result in shutdown of the SBC, at which point the sub will be lost. Once a low

battery voltage is detected, with a factor of safety integrated to ensure the sub can resurface

before shutting off, the sub will do so and recharge. This will be accomplished with the 2S fuel

gauge MAX17044 with the sparkfun breakout board which uses I2C to interface. When each 36

cell reaches the suggested minimum threshold for the selected battery chemistry.

Movement block

36 https://www.sparkfun.com/products/10617

56

Fig. 14. Hardware IO diagram for Movement block

The movement block will simply consist of the selected motors and a reversible ESC for

each motor. Each ESC will require a single PWM channel. The thruster design and layout, along

with the motor selection and number of motors, falls under the jurisdiction of the mechanical

engineers. Once the parameters of the motors have been chosen to match the relevant

requirements, ESCs will be selected to match these characteristics. Thruster flow testing and

iteration through rapid prototyping will occur at the beginning of 2020, and once the speed to

thrust relationship is determined, the motor requirements will be finalized.

57

Software

Fig. 15. Software Diagram

There are eleven main sections of code for the system, each of which will be described

below in detail. Fig. 15 contains a representation of the connections between these systems.

58

IMU Handler

The IMU Handler is responsible for initializing, calibrating and starting the IMU’s

measurement. It has a function that returns the most recent acceleration and orientation data

when called. The BNO055 interfaces using I2C, and is being accessed via the adafruit unified

sensor library. When this is initialized, calibration data is loaded in from the previous successful

calibration, and continues running until all values have reached their maximum calibration level.

The IMU Handler reads in the linear acceleration vector and the euler vector via the library.

Local Awareness

Depending on the finalized results from the acoustic testing, the precise handling of

incoming data will be different based on the finalized selection of hardware, however, the main

functionality of this block remains the same. The local awareness block will periodically instruct

the acoustic system, described in the ​Hardware ​section of ​Design​ to broadcast a signal, and then

listen for the same signal to return. The time gap between sending and receiving will be utilized

in conjunction with the speed of sound in water to calculate how far away the object that the

signal bounced off of was. The transmission hardware should be perfectly functional as receiving

hardware, though testing to confirm that this is the case remains to be done. At the required

awareness range of 1.5m, sending and receiving a pulse would take 4.54ms to respond. The

encoding is necessary to ensure that the received signal was not broadcast from another sonar

sensor. The distances detected for each transducer can then be logged by Archivist.

59

Sensor Bay Handler

The Sensor Bay Handler will simply interface with the modular sensor bay connections.

A protocol will be designated that these sensors will be required to use, and therefore any sensor

connected in accordance with this will be able to have its data read. This data will be collected at

a user specified period, and the resulting data will be collected by Archivist.

Communicator

The Communicator will be the interface with the communication hardware. Transmission

will entail determining the transmission method based on content, encoding the data to be

transmitted, waiting for its turn to transmit, and transmitting said data.

The communicator will also consistently listen for incoming transmissions. Upon

reception, and processing depending on the state of the received data, the information will be

decoded and ready to be archived.

Motion Data

Motion Data starts a daemon process which queries IMU Handler for the instantaneous

acceleration and orientation values. Acceleration and orientation values are collected and added

to logs as they are measured. Once the number of new acceleration values reaches a

predetermined range, R, the most recent R values are passed into the filter function. Because the

data is being filtered in relation to frequency, the filter is affected by the size of R. The double

integration drastically amplifies even the smallest of errors, so a lot of filtering and processing is

60

required to ensure that the displacement data even resembles reality. The R values of filtered

acceleration are appended to its own log, and from it the integrated velocity and displacement

ranges are generated and appended to their own logs. Further development and testing is required

to determine if this method is capable of permitting our design requirements without a functional

GPS connection, and the current progress of this testing is available in ​Preliminary Test Results.

It is important to note that the functionality of the dead-reckoning system is not a direct indicator

of the AUVs translocational capabilities, as it will only serve as an input to the navigation

system.

Archivist

Archivist is the section of code responsible for collecting, logging and providing all

important information. It takes in the collected information from Local Awareness, the Sensor

Bay Handler, Motion Data, and Communication, which contains the information received from

other AUVs. Archivist then ensures that all data that is frequently used by other modules is held

in memory, while all else is stored in a database and removed from memory.

Navigator

The Navigator is a high-level mission control block that performs several functions. First,

it generates a mission plan from a user-provided mission file. This includes the mission type (i.e.

exploration) and coordinates of the pick-up location at a minimum. Second, it retrieves the most

recent motion data from the Archivist and uses this data to estimate its position via

dead-reckoning. This estimated position coupled with the waypoint in the mission plan produces

61

a next motion vector, which is sent to the Pilot. When GPS is used (i.e. during recharging and

initial deployment), actual coordinates will be received and the estimated position at that time

will be discarded in favor of the newly attained reference position. GPS will be periodically used

to prevent unbounded error accumulation from getting to an unreasonable degree.

Emergency Handler

The Emergency Handler is responsible for detecting unsafe states and signalling the pilot

accordingly. Emergencies can fall under one of three types: Collision, Man-down, and Low

battery.

Collision emergencies occur when the sub is at risk of colliding with some physical

object. At this point, the sub will immediately stop if need be and take steps to ensure its own

safety. This type of emergency is found from local awareness data.

Low battery emergencies occur when the sub has detected a low battery level and must

resurface and recharge. This type of emergency is found from battery sensor data.

Pilot

The Pilot is responsible for passing high level motion instructions to the Captain that

factor in high priority safety requirements. Thus, it acts as more of an intermediary class between

the Navigator and the Captain, but with a vital function. The Pilot will be blind to any physical

implementation of the system and only give instructions pertaining to desired motion vectors.

These motion instructions can include a heading change, distance to move, a combination

of these two, an emergency stop or an emergency redirect. Heading and distance changes are

62

routine and should happen repeatedly, but emergency overrides will only occur during situations

where the wellness/safety of a sub is compromised, and is discussed in the Emergency Handler

section.

Captain

The Captain is responsible for housing logic to exhibit repeatable and modular

movement, such as heading changes and linear distance changes. Internally, the Captain adjusts

the motion vector instruction received by the Pilot by any deviation produced from the

environment, which comes from the most recent motion data. These deviations can include small

heading shifts and overall displacements from waves. Continuous motion data is also required to

provide feedback for closed-loop control systems.

For the ATS Mk. 1, heading changes are performed by a PID controller. Work describing

the implementation and testing of the controller can be found under ​Performance estimates and

results​. This section will describe how a PID controller works, and how the output of the PID is

translated into motor output.

The development of a control system for an autonomous underwater vehicle with no

active referencing is a complex task. The traditional method of developing a control system

consists of developing a block diagram that contains all electric and mechanical subsystems,

deriving mathematical equations to relate these subsystems, and combining all these equations

into a single transfer function. This is a fairly trivial task for deterministic and repeatable

systems, such as industrial mechanical machinery, but modelling interactions between an

underwater vehicle and its environment requires knowledge in the field of fluid dynamics, which

63

is highly nonlinear and is dependent on the environment (temperature, dimensions, pressure)

itself as well as the actuating body; hence, since the environment is non-deterministic, any

derived control system is not guaranteed to work in all situations. It is also worth noting that the

mechanical engineers on this project were consulted for this task and offered the following

justification: In many situations, fluid dynamics problems cannot be solved in a reasonable

amount of time and thus lookup tables are often used- therefore any implementation will either

be computationally-demanding, if these problems are to be solved, or require lots of memory, if

lookup tables are to be used, or some combination of the two (however neither is preferable for a

single board computer with limited resources).

There are more complex control system design methods that may allow for more

dependable performance, but these methods were not explored for three reasons. The first reason

is that development and reiteration of a derived control system is a time-consuming and

laborious task. Given the limited time allocated for this project, this path was viewed as a major

risk that may hinder development in other fields and was thus retired. The second reason is that

this project is marketed towards college/university teams and local governments, as opposed to

massive organizations with well-educated researchers. This submarine is modular in both

software and hardware layers, and therefore the implemented control system should be abstract

enough that the client may substitute in their own control system should they feel inclined.

Finally, the third reason stems from our minimum-viable product approach. Multiple test systems

with different control surface layouts are used for testing movement, which means that a

complex control system must be re-derived and re-implemented for every new test system,

adding further development time. Therefore, a control system that is relatively easy to

64

implement, can be implemented abstractly, and results in decent performance is more desirable

than a finely-tuned control system that takes a long while to derive and debug.

A PID controller was chosen for this application, due to the reasons listed above. PID

controllers also have been implemented in non-deterministic environments before for

differential-thrust drive systems with success; specifically, quadrotors are often controlled using

a PID controller . 37

Fig. 16. PID controller diagram

PID controllers are relatively simple to understand and easy to implement. The output of

the controller is a function of the deviation from a process variable (PV) and a desired setpoint

(SP), called in Fig. 16. Using weighted proportional, integrative, and derivative factors of(t)e

this function, the output is computed by summing these three respective terms. The output of the

PID controller, defined as , is expressed mathematically below.(t)u

(t) e(t) (τ)dτu = Kp + K i ∫
t

0
e + Kd dt

de(t)

Fig. 17. PID controller output equation

In Fig. 17 above, represents the weight of the proportional term, represents theKp K i

weight of the integral term, represents the weight of the derivative term, and representsKd (t)e

37 Salih, Atheer L., et al. "Flight PID controller design for a UAV quadrotor." Scientific research and essays 5.23
(2010): 3660-3667.

65

the error function once again, equal to . The proportional gain linearly scales theP V (t)S − P

error function, which largely determines how reactive the controller is and how often/severely it

overshoots. The integral gain sums the instantaneous error over time, and functionally

accelerates motion towards the setpoint. Finally, the derivative gain is computed through the

slope of the error function over time and predicts system behavior. Due to unpredictable

environmental disturbances such as waves and strong winds, the derivative gain may not be

useful in practice.

For our application, there are two types of heading changes; stationary and mobile. While

stationary, the goal is to keep a net displacement of zero, and thus motors are spun at equal but

opposite speeds. This allows the ATS to modify its heading without compromising it’s position

drastically. In this case, the PID output is linearly scaled to a speed change with ao sc

programmable PID output ceiling and maximum speed change , so that if omax sc,max o ≥ omax

then . Otherwise, . This speed change is duplicated and sent tosc = sc,max o/o)sc = (max * sc,max

the Engine as left/right motor values, polarized according to the intended direction of rotation.

While mobile, the motors are already spinning at some speed , whereas this wass

assumed to be 0 for the stationary case shown above. As the captain is the only module that can

directly control the motors, it is safe to assume that these motors are being driven at the same

speed value as the only time when they should not be is when a heading change is underway.

The process for converting PID output to changes in motor speed is very similar to that for a

stationary heading change: and terms are still used in the same manner as, s , o,sc c,max omax

described above, but the final motor speeds are not sent to the Engine in the same manner. Once

 is computed, it is subtracted from the current speed and sent to one of the two motors insc s

66

order to slow that motor down. For example, if the sub is moving forward and needs to make a

slight left turn, the speed change will be subtracted from the left motor’s speed value to yaw the

sub to the left. Generally, the updated motor speed can be expressed as .s = s − sc

There is the case where ; that is, the speed change is greater than the current motorsc ≥ s

speed. In this case, will either stop the motor or cause it to spin in the opposite direction.s − sc

This is undesirable in real-time navigation, as although logically this is a speed difference of only

a small percentage, spinning motors in opposite directions will cause the rate of heading change

to increase very quickly and make stability harder to achieve. Therefore, if , the motor tosc ≥ s

be slowed down will change its speed to 1%, and the other motor will change its speed to the

value of the speed change + 1%. This ensures that both motors keep spinning in the same

direction and that the difference between the motor speeds is always equal to .sc

Fig. 18. Pseudocode for PID output to motor change logic

Examples have been given for forward motion, but the same logic is implemented for

backward motion. This can be useful if a sub needs to backtrack after reaching a dead end in a

convoluted environment.

67

A final implementation detail to mention is the translation of heading values. Heading,

commonly read on a compass, ranges from 0 degrees (inclusive) to 360 degrees (exclusive).

Consider the situation in which the target heading is equal to 355 degrees and the currentht

heading is equal to 2 degrees. In this instance, the PID will see a subtraction of 353 degrees ash

the only way to get to ; however, yawing in the other direction would only require a 7 degreeht

heading change. Another example if degrees and degrees. In this case, the20ht = 2 0h = 4

heading difference is 180 degrees whether the sub moves clockwise or counter-clockwise. This

caps the maximum necessary turn radius to 180 degrees, which is both power- and time-efficient.

Therefore, the following logic is implemented: If the initial heading is within 180 degrees ofh0

, do nothing. If degrees, then degrees. If degrees,ht 80ht − h0 > 1 60ht = ht − 3 80h0 − ht < 1

then degrees. While the target heading isn’t between 0 and 360 anymore, the60ht = ht + 3

controller will now see the shorter path between and . Proper framing is performed toht h0

ensure that is always within the proper reference window for the PID controller.h

Engine

The Engine is responsible for driving all motors and control surfaces. This is

layout-dependent, however motor drivers and servo motors alike will use PWM as a modulation

scheme so a uniform interface for controlling these actuators will be implemented, called a PWM

translator.

The interface for driving a motor is a single integer that corresponds to a speed and

direction. Specifically, this integer is in the range of [-100, 100]. Sending a value of +100 spins

the motor at full speed in one direction (corresponding to forward motion), sending a value of 0

68

stops the motor, and sending a value of -100 spins the motor at full speed in the other direction

(backward). The ATS Mk. 1 has only two motors, so spinning clockwise (for example) simply

consists of sending a positive left motor value and a negative right motor value, and vice-versa

for counter-clockwise.

In implementation, the Electronic Speed Controllers (ESCs) used here are bidirectional

and map out the range of motor values to the standard range of duty cycles for servo motors and

ESCs. This duty cycle range is 5% - 10% of a 50 Hz signal, meaning that the pulse width ranges

from 1ms to 2ms. Therefore a motor value of -100 corresponds to a duty cycle of 5%, 0 to 7.5%,

50 to 8.75%, and so on.

With the assistance of the mechanical engineering team, a tachometer was used to ensure

a common minimum speed (i.e. speed = 1 or -1) across all motors. This motor value was

hardcoded into the PWM translator to ensure that at base speeds, motors spin at the same rate.

Undesirable outcomes that this prevented include passive drift over time when movement is

supposed to be linear.

Design Changes

Over the course of this project several aspects have been refactored to more realistically

represent what would be feasible to complete in the scope of this research. A significant change

in the original planned functionality stemmed from the limitations discovered in the functionality

of dead reckoning based on IMUs within our price range. As a result of this information, the

planned method of navigation shifted to one that does not require knowledge about precise

69

location. However this section of development has yet to be reached, so this has yet to affect any

implementation.

Current Design and Implementation

Movement (performed by Jacob)

The primary change between our preliminary design and our current design in terms of

movement is the implementation of a hardware PWM board over a software PWM library. As

can be found below in the Performance estimates and results section, Movement subsection,

utilizing a software PWM library results in pulse jitter in the microsecond range. Brief testing

with a hardware PWM board shows pulse jitter in the tens of nanosecond range, effectively

1/100th of the inaccuracy.

This board was implemented for a few reasons: firstly, the price of high resolution PWM

breakout boards is very low due to hobbyist demand. Second, due to the limited speed resolution

of the Mk. I, pulse jitter over time may cause errors in navigation, which is especially

problematic since the navigation approach has shifted to reaction-based as opposed to

point-to-point. The implementation of a more stable PWM generator retires this potential risk.

Finally, the resolution for a single PWM channel is higher for the hardware PWM board over the

software library, allowing for more precise control.

70

Dead Reckoning (performed by Xavier)

As previously noted, generating accurate displacement values from an IMU is very

difficult due to the fact that any source of error is exponentially increased during the calculation.

Not only does this mean that accuracy in determining how far the AUV has moved if not

processed correctly, but it could also falsely generate information saying it has moved when it

has been effectively stationary. With the selected BNO055 IMU sensor, these are the steps which

have been implemented in an attempt to get usable displacement values.

To have a starting place for this process, information about the measured values from the

IMU needed to be collected. To make sure these values were as close to possible as what would

be measured in one of the AUV iterations, the internal skeleton of the AFμS MK1, was 3D

printed and all tests were performed with the IMU mounted on the center axis. This had the

added benefit of encapsulating the Raspberry Pi, which became useful further down the line in

testing. The skeleton was moved by hand in a variety of directions at a rate predicted to fall

within the range of likely motion. As the goal of this test was to get a broad indication of the

values that will be experienced, precise motion was not necessary.

A fourier transform of the acceleration data was taken, which shows the frequencies

experienced along with their amplitudes.

71

Fig. 19. Fourier transform of predicted motion

As can be seen in Fig. 19 above, the purposefully generated motion falls in the range of 0-~2Hz,

while the lower amplitude data falls into higher frequencies.

72

Fig. 20. Unfiltered predicted motion data

Fig. 17 shows the collected data run through a filter with no parameters. Knowing the

frequency range of collected motion from the initial fourier transform, the data was passed

through this function again with a lowpass filter of 1.5Hz.

73

Fig. 21. Filtered predicted motion data

Fig. 21 shows the same data with the filter applied to it. A comparison of this to figure 20

shows a significantly cleaner signal, which is at least visually indicative of expected motion.

74

While a cutoff value of 1.5 certainly produces better data than no filter, this value will be tuned

as more data is collected.

The results of this test were implemented into filter functions using the scipy.filtfilt() 38

function, which results in a phase offset of 0.

The next step was to verify that the IMU was reading acceleration data correctly, or at

least a range approaching correctly. To do this, a simple drop test was performed, and the

acceleration data was recorded.

Fig. 22. Drop test acceleration data

38 ​https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html

75

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html

The peak negative value shown in Fig. 19 is -9.57 , which is close enough to earth's/s m 2

gravity of 9.8 that the discrepancy can be explained by the orientation not remaining/s m 2

completely flat during the fall. Now that the values read from the IMU are verified to fall within

reasonable bounds of reality for large measurements, edge case information needs to be gathered.

This test entails gathering stationary acceleration data to see what affect the application of the

lowpass filter has on the background acceleration noise across a range of cutoffs. While

stationary noise will be easy to filter out using a threshold, this noise will be present in all

measurements, and therefore analysing it in isolated conditions is important for the overall

design of the filter system.

76

Fig. 23. Stationary Acceleration data with a range of filters applied, order 1

Though there is variance in the results shown in Fig. 20, none of it is drastic. This test was

repeated for a higher order, and a range of orders.

Fig. 24. Stationary Acceleration data with a range of filters applied, order 3

77

Fig. 25. Acceleration data with a range of filters applied, under motion

From the data shown in Figs. 23 through 25, the relationship between order, delay, and

signal smoothness comes through. In Fig. 25, the acceleration data comes from the system under

motion, which brings to light the phase offset resultant of higher order filters.

With this information gathered, the next step was to develop the code to collect and

generate this data in the manner that will be used in the AUV itself. As the output of the IMU is

instantaneous acceleration, and because integration over a single value is not possible, the

calculation of displacement has to be handled in chunks. Hypothetically, integration could be

performed over the entire range of acceleration every time there is a new value added, though

78

this would be very computationally inefficient and result in unneeded time resolution. The final

system is as described in the design section under ​Motion Data​.

To test this system, simulated sinusoidal acceleration values were fed into Motion Data as

though they were coming from the IMU handler.

Fig. 26 Velocity and displacement from simulated acceleration data

As can clearly be seen in Fig. 26, the first results of this system were incorrect. After significant

debugging and comparison of results with the “real” values, a much improved output was

achieved, which can be seen below in Fig. 27.

79

Fig. 27. Velocity and displacement from simulated acceleration data

This initially seemed correct, but close inspection shows that the values stray further from each

other as time progresses. The source of this error was difficult to track down, but it turned out to

be because acceleration needs to be passed along with the immediately most recent value to have

velocity align with the previous calculation.

80

Fig. 28. Velocity and displacement from simulated acceleration data

Though the calculated values in Fig. 28 do not exactly match the base values, further inspection

showed that this discrepancy is due to the difference in integration methods used for the

integration calculation.

Now that the algorithm was confirmed to be functioning correctly, it was time to work

with real data. The simplest way to gather data was to move the system by hand while

calculating the input, then graphing out the resultant displacement to compare with the

81

performed motion. As this data is coming from the IMU, it is in 3 dimensions, therefore the

results of these tests are in 3D graphs.

Fig. 29. Displacement XYZ (cm), vertical motion test

The test displayed in Fig. 29 is the resulting data from directly moving the system upwards and

then terminating the test. Though this does display direction indicative of this motion,

observation of the axis shows that the displayed figure is misleading, and little to no aspect of the

real motion was recorded. Due to limitations of the 3D graphing suite, mainly the inability to

have defined axis dimensions, pursuit of this presentation method was rapidly discontinued,

82

though after going through several hand controlled motions, it was quickly determined that

significant work on the filter would be required.

To evaluate how well the filter is functioning in order to improve it, repeatable known

motion of the system was required. To enable this, the mechanical engineering team was asked

to design and build a test rig, which would hold and spin the IMU+Raspberry Pi system

smoothly, controlled by a continuous rotation servo.

Fig. 30. Motion generating test rig

83

With the continuous rotation servo set at a known PWM value, the RPMs were measured, and

from this the tangential velocity of 0.713m/s was calculated. From a normalAn = r
V t

acceleration of 5.09 was determined. This is displayed in the IMUs measurements as well.m/s2

Fig. 31. Spin test acceleration values

Now that there was a method for generating values to compare against which included the IMUs

errors, the next step was to use this comparison to optimize the filter parameters. It was decided

to use regression algorithms to hone in on the ideal parameters. The way this works is the

regression algorithm is provided with a function to pass parameters to, and which will return a

score. The algorithm attempts to find the input parameters which produce the lowest returned

score from within a designated range. The function that this algorithm is given initializes Motion

Data with the parameters it has been given, and gathers data for a set period of time while under

84

motion in the test rig. Once data has been collected for said period of time, it sums the RMSE 39

score over each value in the gathered and real datasets. This summation is then returned to the

regression function. The parameters that this regression function is tuning are range, cutoff

frequency, and filter order. The range that the algorithm is allowed to vary over was informed by

the initial filter testing, and narrowed down over time based on the results of previous regression

runs.

Fig. 32. Spin regression results

39 ​https://www.statisticshowto.datasciencecentral.com/rmse/

85

https://www.statisticshowto.datasciencecentral.com/rmse/

Fig. 32 shows the gathered data, run through a filter with the regressed parameters, graphed on

top of the real data. These results appear very promising, however this is for linear acceleration,

which is significantly simpler than nonlinear.

The test rig was next modified to generate a normal acceleration, which upon integration

would produce . This is analogous to velocity, though because it is generated solelyin(t)s + 1

from the normal component of acceleration, it is not a real velocity, even though the IMU will

not be able to differentiate. This function will be referred to as velocity to simplify matters, and

from it, virtual displacement is calculated, which will just be referred to as displacement.

“Real” values for each of these were generated, and can be seen in the following three

Figs..

Fig. 33. Calculated acceleration value for scoring

86

Fig. 34. Calculated velocity value for scoring

87

Fig. 35. Calculated displacement value for scoring

Using the filter parameters provided from the linear acceleration regression, an initial graph of

measured and filtered acceleration was generated.

88

Fig. 36. Nonlinear spin acceleration

While the filtered acceleration in Fig. 36 is certainly not an ideal representation of what the

acceleration data should look like, it is a lot better than the unfiltered values.

The regression code was modified to generate a graph for each epoch, and code was

added to start the nonlinear spinning at a specific time to synchronize the measured values with

the starting point of the calculated values. The graphs allow for human analysis of the results of

each test, regardless of the score, and insights made from this were used to tune the range of

parameters the algorithm optimized over. For this human analysis it was much easier to compare

89

values using index as the x axis, so each x value corresponds to 0.007s. Initially results appeared

promising.

Fig. 37. Calculated Vs. measured & filtered acceleration

However, as testing progressed, issues with synchronization began to show up.

90

Fig. 38. Calculated and measured acceleration, synchronization issue

While the synchronization distance in Fig. 38 may not seem particularly large, due to the scoring

method used, slight differences compound greatly. Further testing and investigation lead to the

conclusion that a lagging network connection was causing discrepancies in the start time of the

test rig.

91

Fig. 39. Calculated and measured acceleration, significant synchronization issue

Said lag was sometimes great enough to put the signals completely out of phase with each other,

as can be seen in Fig. 39. This produces a horrible score, but as the algorithm is only aware of its

parameters, it ruins the regression. As the start signal requires the connection to an external

server, and direct interfacing between the Pi and servo controller is impossible due to the Pis

spinning, there was no way to concretely eliminate the lag itself.

92

The solution found for this issue was to make the servo function continuous, so there was no

initialization signal, and have some onboard method of synchronizing the signals after they are

collected, but before they are scored.

To do this, a function to detect the valleys in the filtered acceleration was implemented,

and used to sync to the valleys of the real acceleration.

Fig. 40. Calculated, measured and filtered acceleration, valley based synchronization

The red dots in Fig. 40 represent the location of the located valleys, and it can be seen that the

real acceleration signal is adequately synchronized with the filtered one. This figure also displays

large spikes in the filtered data, which signifies that a cutoff value of 1.5 is too high, allowing

93

insight which can be applied to the parameter ranges. Unfortunately, the valley detection

algorithm was not as robust as desired, and resulted in situations where no valleys were detected

for no discernable reason.

Fig. 41. Calculated and measured acceleration, valley detection issue

No valleys were detected in the filtered acceleration signal shown in Fig. 41, even though the

data appears to be clean enough for the detection to work flawlessly. This error was too difficult

94

to reproduce for it to be efficient to try to directly debug it, so in the case where no valleys were

found, the smallest acceleration value would be assumed to be a valley, and then used to

synchronize the calculated real acceleration.

After running the optimization algorithm and honing of the parameter ranges over the

course of a week, the resulting filtered values began to consistently display desirable results.

Fig. 42. Calculated, measured and filtered acceleration, good looking results

95

Once the selected ​parameters ​were constantly coming up with low scores, the velocity and

displacement values were added to the graphs.

Fig. 43. Measured, real and calculated values from filter

If you compare the calculated values in Fig. 40 with Figs. 30, 31 and 32, they all appear to match

fairly well, which was taken as an extremely promising sign. The filter parameters were set to

range=500, order=2, and cutoff=0.5, and the system was set to be stationary while it gathered

data.

96

Communication (performed by Jacob)

The proposed design of the communication system in terms of encoding technique

remains unchanged from the preliminary design. However, there is a small change in the

hardware design of the receiver (phototransistor + comparator). Instead of setting the

non-inverting input of the comparator to a constant voltage value, a DAC is implemented

instead. This allows for the sub to dynamically change the sensitivity of the receiver in response

to the perceived “noise floor” (minimum level so that the output isn’t driven from the noise in

the environment alone), thus adding robustness to the design. DAC’s are also cheap and easy to

implement, making it a prudent choice for this application.

The primary implementation from this term in terms of communication was a test rig to

gauge the BER of the communication system This test rig is implemented as a 55-gallon water

tank with a 1 meter maximum distance. A photo of this tank can be found below.

Fig. 44. UWOC tank, empty

97

An optical communication system, like any communication system, is affected by the

noise in the transmission channel. In this case noise is ambient light, and since this is unguided

wireless transmission, there is little to be done to reliably eliminate the noise completely; the

communication system must instead be able to perform in a variety of noise conditions to be

useful (i.e. a variety of ambient light levels).

Therefore, ambient light level must be controlled in order to determine how well this

communication system performs in a given environment. Firstly, the tank was fully light sealed

using a combination of multiple coats of black spray paint and Gaffer’s tape, and then by using

an ambient light sensor inside the tank to measure the light level when no transmission was

occuring, and verifying the illuminance in the tank was 0 lux. To produce an ambient light level,

an array of high power full spectrum LEDs were attached to the underside of the lid and

controlled via an NPN transistor, which acted as a current amplifier. The UWOC tank lid is

shown below.

Fig. 45. Underside of UWOC tank lid with LEDs

98

Once the environment was set up, the optical communication peripherals (LED and

phototransistor, in this case) had to be installed. As the transmission distance might vary from

test to test, it was imperative that at least one of these peripherals be repositionable in the tank.

As ambient light levels were recorded at the phototransistors’ location, and even ambient lighting

in this environment is not guaranteed, the phototransistor was held fixed while the LED was

made repositionable. Extruded aluminum was used for this application as it is very cheap, was

easy to source, and has high oxidation resistance. Placing these electrical components on stands

also allows for easy replacement and maintenance, if required.

Fig. 46. Completed LED stand for UWOC tank

99

As for the waterproofing of the electrical components, parts were developed by the

mechanical engineering team based on specifications provided by the computer engineering

team. These specifications were that for the LED, nothing may obscure the view of the lens, and

for the phototransistor, nothing may obscure its view to the half-angle, which is 75 degrees in

this case. These parts were 3D-printed in ABS and smoothed using acetone vapor, then epoxied

together using marine epoxy. Photos of these parts for the LED can be found below.

All of these parts make up the UWOC test rig that the communication system was tested

in. Results of these tests can be found below in the Performance estimates and results section.

100

Fig. 47. LED test rig part, disassembled

Fig. 48. LED test rig part, assembled

Fig. 49. UWOC tank, completed

Obstacle Avoidance (performed by Xavier)

Hardware

Initial sonar development began during the first term of this project, with experimentation

and research based around the construction of custom waterproof transducers and hydrophones.

Custom construction would allow for greater control over the price point vs the precision of this

system, which is desirable for affordability. The physical characteristics of the design were

101

researched and implemented by Sam Veith from the mechanical engineering team, and focused

mainly on the layer that interfaces between the piezoelectric element and the transmission

medium. Methodologies researched were from a variety of sources, ranging from DIY projects40

 to graduate level research papers , on both transducers and hydrophones. While the 4142 4344

computer engineering focus was directed at motion and displacement measurement, the

mechanical team developed several prototype transducers. These were tested, and while they

displayed desirable functionality, concerns over durability and size on a large scale of production

determined that off the shelf transducers and hydrophones would be utilized.

For initial prototyping and testing the ​CPE-267​ was selected, as it operates in a

convenient voltage range (6-14v), has the highest theoretical range out of the selected

transducers, and is self driven, reducing the number of places at which errors can occur. The only

hydrophone selected was the ​CMC-6027-42L100​, which is an electret condenser microphone

and can easily cover the range of frequencies that may be encountered.

The transducer was wired to the SBC via an NPN transistor, allowing it to be driven off

of 14v from the SBCs 3.3v GPIO. The hydrophone, without amplification, has a relatively low

40 ​Homebuilt Side Scan Sonar​. (2010). MBT Electronics.
https://www.mbtelectronics.com/side-scan-sonar.php
41 ​Joy, K., Hamilton, J., Jewell, M., & Babb, I. (2016). ​Simple Hydrophone Design​. Simple Hydrophone
Design.
https://www.nurtec.uconn.edu/wp-content/uploads/sites/287/2016/08/COSEE-TEK-Simple-Hydrophon
e-Material-List-Fabrication-Instructions-V4.2-7-7-2016.pdf
42 Grzinich, J. (2016, December 9). do-it-yourself hydrophones. john grzinich.
https://maaheli.ee/main/d-i-y-hydrophones/
43 B. Benson ​et al​., "Design of a low-cost, underwater acoustic modem for short-range sensor networks,"
OCEANS'10 IEEE SYDNEY​, Sydney, NSW, 2010, pp. 1-9.
44 ​Won TH, Park SJ. Design and implementation of an omni-directional underwater acoustic micro-modem
based on a low-power micro-controller unit. ​Sensors (Basel)​. 2012;12(2):2309–2323.
doi:10.3390/s120202309

102

https://www.digikey.com/product-detail/en/cui-devices/CPE-267/102-1282-ND/671238
https://www.digikey.com/product-detail/en/cui-devices/CMC-6027-42L100/102-4102-ND/6561040
https://www.mbtelectronics.com/side-scan-sonar.php
https://www.nurtec.uconn.edu/wp-content/uploads/sites/287/2016/08/COSEE-TEK-Simple-Hydrophone-Material-List-Fabrication-Instructions-V4.2-7-7-2016.pdf
https://www.nurtec.uconn.edu/wp-content/uploads/sites/287/2016/08/COSEE-TEK-Simple-Hydrophone-Material-List-Fabrication-Instructions-V4.2-7-7-2016.pdf

output. The signal from the transducer read directly from the hydrophone produces the output as

shown below in Fig. 50​.

Fig. 50: Unamplified read in signal from undriven hydrophone to oscilloscope

The transducer signal is clearly there, but there is a lot of noise present as well, which was

expected. The hydrophone is undriven at this point as it was only being used with the

oscilloscope, but to have it function in a circuit a simple driver is required.

103

Fig. 51: Driven hydrophone output

Driving the hydrophone adds a DC offset, but the output amplitude is now ~4x larger, which

makes it a lot easier to process. The offset was filtered out with a capacitor, which both reduced

the noise slightly and centered the signal around 0v.

104

Fig. 52: DC filtered hydrophone output.

A passive bandpass filter was designed around the transducer frequency, however this

was experimentally determined to be ineffective. A large number of ICs with bandpass

capabilities were compared, and based on the performance/pricepoint ratio, the MAX274 chip

was selected, which allows for the construction of 4 2nd order filters. The filter design software

for this chip had to be spun up in a DOS emulator, though the resulting functionality provided

resistor values to generate the desired filter. This ended up being a 4th order butterworth

bandpass filter centered at 2.9kHz with a moderate Q factor to allow for frequency shifts due to

both medium and potential doppler effect while under motion. Said resistor values were replaced

with the closest standard resistor values.

105

Fig. 53: 4th order butterworth filter

The filter shown in Fig. 53​ ​was simulated across a range of frequencies, and its response is

shown below in Fig. 54.

106

Fig. 54: Response of 4th order butterworth filter.

As can be seen there is a reasonably sharp dropoff as the frequency extends to either side of the

selected band.

The output of the DC filtered hydrophone needed to be amplified to match the range of

the bandpass filter, so the signal is passed through a simple op-amp circuit built from a TL072

chip before reaching the bandpass stage.

107

Fig. 55: Filtered received ping signal.

Fig. 55 displays the signal produced by driving the transducer for 2ms, read in by the

hydrophone and passed through the bandpass filter. It very clearly is a much cleaner signal than

the unfiltered tests, and exactly matches what is desired for this stage.

The next problem is reading in a ping to the SBC. As the selected SBC does not have

analog inputs, the read in values need to be digital values. To do this, a LM311p comparator was

used. A comparator is a device which has a setabel threshold, and when a read in value is above

said threshold, outputs a digital 1, and outputs 0 otherwise. When a received and filtered ping is

fed into the comparator, the output is as shown in Fig. 56.

108

Fig. 56: Comparator result from a ping signal

Each of the spikes corresponds to one of the signals pulses crossing the threshold value. From

preliminary software tests, it was determined that this level of signal abstraction was too great to

easily process, as the spikes from the sent signal and the received echo are difficult to

differentiate with so many values per ping. To solve this, a circuit was designed to convert a ping

into a single signal pulse, to be inserted between the filter and the comparator. The first stage

rectifies the signal so that only the positive part of the signal remains, as can be seen in fig. 57.

The second part is a smoothing capacitor, which converts the series of positive pulses into a

109

single pulse, which can be seen in fig. 58, to be fed into the comparator, the output of which can

be seen in fig. 59.

Fig. 57: Rectified signal

110

Fig. 58: Smoothed rectified signal

111

Fig. 59: Smooth signal and associated comparator output.

The entire constructed circuit with all of its stages allows a pulse to be consistently read in

digitally by the SBC. The diagram and physical hardware layout of the full circuit can be seen

below in figs. 60 and 61.

112

Fig. 60: Sonar receiver circuit diagram

Fig. 61: Sonar receiver circuit.

Software

As the hardware stage of this module is relatively complex, the software side of things is

equivalently simple. The sonar module is encapsulated in a class, which is initialized with the

associated pins and the transmission medium [air or water]. A measure_distance() function

113

handles everything needed. It sends out a ping, then waits until the return value is populated

before returning the calculated distance. When the sonar class is initialized, it starts a callback

function on the receive pin, which when called calculates and stores the time difference between

transmission and reception of an echo. Once this time value is recorded, the measure_dist()

function uses the speed of sound in the given transmission medium to return the measured

distance. This setup allows for constant asynchronous distance measurements to be taken so that

the most recent distance measured is readily available, as well as being able to read a new

distance on command. Having this much control over the system is critical as obstacle avoidance

is the largest active safety factor in the AUV.

Performance estimates and results

Movement (performed by Jacob)

Software PWM Library under load

For an early implementation of PWM in the ​Design​ section, Engine block, a software

PWM library was used to drive all ESCs. To ensure that the PWM library would be able to keep

up with real time duty cycle changes and not oscillate uncontrollably, a load test was performed

to determine the performance of this library.

PWM was performed on five GPIO pins. One of the five pins was randomly selected to

act as the reference pin. The reference pin was sent a 5% duty cycle at 50 Hz (as would be

114

experienced experimentally) and the maximum jitter of the signal was recorded before any other

pins were turned on. Here, “jitter” refers to the deviation of the pulse period from the expected

value. For a 5% duty cycle at 50 Hz, the expected pulse period is ..05 1/50 Hz) ms0 * (= 1

However, deviations (or jitters) of up to 3 µs were observed, or 0.33% of the expected pulse

width. The other four pins were then randomly and continuously assigned duty cycles between 5

and 10% at 50 Hz while the reference pin’s output signal was examined. It was found that the

maximum jitter was approximately 3.2 µs. This is a negligible difference and thus it can be

concluded that the PWM library is capable of performing PWM on multiple pins simultaneously

without issue.

Heading Change PID Controller

Traditional second-order system behavior indicators (e.g. %OS error, peak/settling times)

are not useful for approximating the behavior of this submarine, as these approximations assume

a deterministic environment. Therefore, literature was consulted to provide some estimation for

performance- in this case, settling time is the most important performance indicator- and a

settling time of 5 to 10 seconds was found to be likely for stationary heading change.

115

Fig. 62. Photo of the ATS Mk. 1

One of the most basic behaviors this sub must be able exhibit is changing it’s heading to

a target heading. Therefore, some control system must be capable of deciding what PWM values

to send to the actuators in the system to achieve this heading. As described in the ​Design​ section,

Engine subsection, each motor is driven from a value in the range of [-100, 100]. It should also

be mentioned that the motors used for this application are high performance, high RPM motors

that can draw up to 35 A each. This is overpowered for testing with the ATS Mk. 1 which is a

small and light submersible, but were the only available motors at the time. For the stationary

tests examined in this section, motor value/speed range was constricted to [-2, 2] (i.e. 2% speed)

for general stability reasons as a speed over 2% caused overshooting in all cases. This sharply

limits the range of speeds that the motor can be driven at by the PID controller, and future tests

and test systems will include hand-selected motors that are appropriately powered.

116

Once the PID was implemented and confirmed as working correctly, the next step was to

tune the controller. Several heuristics exist for tuning PID controllers; manual tuning and the

Ziegler-Nichols method are two prominent choices. Manual tuning follows a set experimental

plan : Set the I and D terms to 0. Increase P until the system oscillates, then halve that value- 45

this is you . Increase the I term until the system corrects itself within a reasonable period ofKp

time, however not too much as that will call instability- this is you . Finally, increase the DK i

term until the system corrects itself within a reasonable time frame- this is you . This methodKd

guarantees a result that is suitable for the use case, however can be quite time consuming. The

Ziegler-Nichols method produces , and by using the proportional gain term at the, KKp I Kd

point of oscillation and the period of that oscillation as variables for the three respectiveKc T c

terms. For a PID controller (methods exist for P and PI controllers as well), these equations are

 and . This method is quick to implement, however has.6K , K .0/T ,Kp = 0 c i = 2 c /8.0Kd = T c 46

several limitations. The loop is tuned for quarter-amplitude damping, meaning that absolute

oscillations above the setpoint have amplitudes that are ¼ of the previous amplitude. Inherently

this means the loop is built to oscillate, which is not desirable. Instability is another issue,

especially in lag-dominant processes such as this one (that is, slow reaction time and drift due to

momentum on turns). Therefore, as the loop time for this process is fairly short, manual tuning

was used.

45Bucz, Š., & Kozáková, A. (2018). Advanced Methods of PID Controller Tuning for Specified Performance. PID
Control for Industrial Processes. doi: 10.5772/intechopen.76069
46Ziegler, J. G., & Nichols, N. B. (1993). Optimum Settings for Automatic Controllers. Journal of Dynamic Systems,
Measurement, and Control, 115(2B), 220–222. doi: 10.1115/1.2899060

117

Fig. 63. Illustration of quarter amplitude decay

Early testing results are shown below, performed in the Union College swimming pool.

While one of the main goals of these tests were to determine the optimal , and terms,, KKp i Kd

the other was to gain some insight into how large of an impact waves and other transient motions

in a body of water would impact the stability of the system. Specifically, how much did

waves/buoyancy impact heading vs. the PID controller. Therefore, qualitative observations are

provided at various phases of testing to offer a potential explanation for any unidentified

behaviors, which are obtained by watching footage obtained of every test.

118

Fig. 64. ATS Mk. 1 in action

Once the system was placed in water and confirmed as ready, the I and D terms were set

to 0, the P term was increased until oscillations formed. Below is an example of severe

oscillation with P=0.25.

119

During these tests, almost all motion was generated by the motors on the sub and waves

played a very small role. Although both tests were run with the same PID parameters, the period

of the oscillation is significantly different between the two, along with amplitude. This points to

severe overshooting in both directions and appears to create an endless loop; a large heading

difference spurs a strong motor response, which overshoots the setpoint largely creating another

large heading difference, hence a strong motor response, and so on. The P term was scaled back

to 0.15.

To ensure that the oscillations from the previous tests (P=0.25) were addressed, the sub

was positioned at the same starting heading, roughly -50 degrees. As can be seen above, the

oscillation is completely gone, which is an overcorrection as by definition the term requiresKc

fixed oscillation. Hence, was determined..2Kc = 0

120

Fig. 65. PID oscillation at P=0.25, low

frequency

Fig. 66. PID oscillation at P=0.25, high

frequency

Fig. 67. PID performance at P=0.15, t=14s

Fig. 68. PID performance at P=0.15, t=7s

For the left figure above, waves placed a large role in the controller’s reaching of the

setpoint. There was a counter-clockwise motion induced by the motors at but all motion st = 3

afterwards was purely due to forces in the environment acting on the sub. As any motor pulse

typically creates more disturbance than in corrects, reaching a space generally close to the

setpoint is understood as a large factor for continuous stability.

The next step was to divide this value by two and set it as the term, then start onKp

determining the optimal I term. Several I terms were used, with some of the best results being at

I=0.0 and I=0.05.

Results begin to look promising, and at the very least the controller closes in on the

setpoint within a more reasonable time period. The right figure above points to better stability

and loop control, as the slope’s tangent line towards the final headings approaches is closer to the

horizontal. Once again, for this figure, environmental forces caused the inflection at ,.25 st = 3

and the only motor actions were at times and . st = 0 st = 2

121

Fig. 69. PID performance at P=0.1, I=0.0

Fig. 70. PID performance at P=0.15, I=0.05

Increasing the I term to 0.075 caused oscillation, as seen below and as expected at some

point when taking the integral term. Therefore, was determined..05K i = 0

Fig. 71. PID performance at P=0.1, I=0.075

Finally, the D term was examined. As mentioned before, the D term may not be useful in

this application, especially when factoring in how disturbing spinning motors can be to the

relatively tranquil state of the environment. A good visual example of this hindrance is displayed

below, when the D term was set to 0.1.

122

Fig. 72. PID performance at P=0.1, I=0.05, and D=0.1

While the controller was able to close in on the setpoint fairly quickly, the rapid motion

exhibited by the sub caused drift and a relatively steep tangent line at the finishing point. There is

also an example of preemptive action at , where the sub backed away from the setpoint.75 st = 0

line as it was heading towards it. Therefore while more motion may allow the PID to reach its

target quicker, and can even be orchestrated in a way that doesn’t cause infinite oscillation,

stability is still problematic.

123

Fig. 73. PID performance at P=0.1, I=0.05, D=0.05

Using D=0.05 similarly produced undesirable results. Oscillations occurred once more,

but at higher amplitudes and significantly longer periods than tests with D=0.075. After the third

oscillation, the controller stops pulsing the motors entirely (effectively deciding that even a speed

of 1 is too great), thus allowing drift and environmental forces to move the sub. This test also

began with a heading difference of more than 100 degrees, whereas the previous test had a

heading difference of only 50 degrees or so.

D was reduced to 0.025. Results for these parameters are shown below.

124

For all tests, the controller needs no more than a single motor pulse and the final tangent

line is relatively close to horizontal. Additionally, average completion time took less than 5

seconds overall, as can be seen in the above table. This provides the best parameters encountered

thus far for achieving system stability. The top left figure above is especially encouraging, as the

125

Fig. 74. PID performance at P=0.1, I=0.05,

D=0.025, test #1

Fig. 75. PID performance at P=0.1, I=0.05,

D=0.025, test #2

Fig. 76. PID performance at P=0.1, I=0.05,

D=0.025, test #3

Table. 3. Average completion times with

P=0.1, I=0.05, D=0.025

Test # 1 2 3 Avg.

Completion

time (s)

1.3 6.5 6.2 4.667

heading difference was roughly 100 degrees and a single motor pulse was sufficient to achieve

stability in a small period of time.

This is not an indication that these parameters are optimal, however they are a good

starting point for future tests. Due to limited time to run tests after waiting several weeks to get

access to the pool, the number of tests run thus far is small. The ATS Mk. 1 was able to hone in

on target headings in many cases, but the class of motors used makes actuation rather blunt at

this point- future tests may demand slower motors.

Future testing will include testing more PI configurations as opposed to PID, to see if a

derivative term is needed. Beyond that, tuning the controller will include more intermediate

values, instead of blocks of 0.025 used to increment/decrement parameters. Finally, testing of

Ziegler-Nichols method will also be performed using and an averaged value at.2Kc = 0 T c

many different starting headings, as it has been shown that the oscillation period can vary

greatly.

Testing performed thus far has also been solely for stationary heading changes, although

the majority of heading changes in a mission will be mobile. This grants more granular control of

yaw change over time and thus should allow for an increase of allowable speed differences

between motors.

Discussion

Tests performed in this section utilize unideal electrical components for this application.

These tests are also fairly limited, as the goal for such was to ensure correct PID implementation

126

and tuning- this is why stationary heading change as opposed to mobile is utilized here, as linear

movement adds further complexity.

Even with these issues, our system has shown the ability to reach its setpoint with an

average settling time of less than 5 seconds, which is better than our initial expectations.

Movement testing is fairly limited; as the Mk. I is limited in its abilities and has

limitations as a test system for motion, other functionalities such as UWOC and Obstacle

Avoidance were focused on while the mechanical engineers designed and manufactured the Mk.

II. This unfortunately was not completed before winter term was concluded.

The Mk. II has a much larger footprint than the Mk. I, which results in greater drag.

Coupled with a gear ratio to reduce thrust, the Mk. II should be far less reactive than the Mk. I,

and concerns may arise regarding its ability to reach a target heading in a reasonable amount of

time. As the gear ratio for the drivetrain is modifiable, the thrust output is customizable and can

be adjusted to ensure that the Mk. II has the reactivity for this requirement.

The Mk. II also physically has all the necessary control surfaces for 3D movement- in

this case, 2D movement with the ability to dive/resurface. This is due to the fact that in addition

to the tank-drive propulsion system that allows for linear 2D motion and yawing, elevons are

installed to allow for pitch control.

Therefore, the Mk. II contains all the control surfaces required to meet our design

specifications. Based on the Mk. I’s performance given its electrical design, the fact that tests

were run in a fairly noisy environment (a member of our team was in the pool to document its

performance which undoubtedly created some current), and the robustness of the Mk. II, meeting

design specifications with this next test system should be possible.

127

Dead Reckoning (performed by Xavier)

Results of the dead reckoning system unfortunately determined that this approach would

not be feasible to pursue.

Fig. 77. Measured, real and calculated values, stationary test

As can be seen in Fig. 77, the displacement value increases exponentially fast, which is not

desirable behavior. This implies that the driftrate/noise level in the IMU is high enough to cause

this level of imprecision. To alleviate this problem, the maximum acceleration value from

128

completely stationary data collection, 1 , was implemented as a threshold, so anym/s2

acceleration value below that would not be registered.

Fig. 78. Measured, real and calculated values. Stationary, then moved, test

Fig. 78 shows a test where the system was left static for a period of time, then picked up. As can

be seen, there is no drift until the system is moved, at which point the displacement values begin

to exponentially increase.

129

Further testing showed that the exponential incrementation could be influenced, at least

temporarily, by initiating motion in one direction, and then changing to the opposite direction,

but instead of returning to 0 or representing a reasonable displacement value, the exponential

change continues. This effect can be seen in Fig. 79 below.

Fig. 79. Measured, real and calculated values. Reversed motion test

This behavior indicates sensor drift, which, according to preliminary research, is nearly

impossible to correct without a baseline to reset to.

130

Further testing and development on this will continue for the duration of 2019, and if the

results are promising, into 2020. However, if it is deemed not feasible to implement this system

with the timeframe of this project, alternative solutions will be implemented.

Communication (performed by Jacob)

Early UWOC Component Testing (white light)

This subsection details early work performed in gauging performance of optical

communication components. Specifically an SFH 310 900nm phototransistor and a 3W white

power LED are used, as described in the ​Design​ section, Communication block. These

components do not operate in the wavelength necessary for underwater wireless optical

communication, but were used for general prototyping. Neither of the datasheets for these

products include an average rise/fall time, so the maximum pulse rate at which the

phototransistor can still receive full saturation could not be computed mathematically. Therefore,

a small test was run using a signal generator, oscilloscope, DC power supply, an LED driving

circuit and a phototransistor circuit (see the ​Design​ section for a schematic of these circuits).

LEDs were pulsed at various frequencies and the voltage across the phototransistor was read out.

131

Fig. 80. Optical pulsing at 100 Hz

At 100 Hz, the square wave is read out without issue and the waveform is relatively

rectangular. Rounding appears to be more of an issue on the falling edge, which indicates that the

LED fall time may be the hindering factor as LEDs typically have quicker rise times than fall

times . 47

47 High-speed switching of IR-LEDs — Background and data sheet definition

132

Fig. 81. Optical pulsing at 300 Hz

At 300 Hz, rounding is noticeable on both rising and falling edges, and the time delay is

roughly even for both (0.4 µs). Potentially, the phototransistors’ rise time is becoming more

visible.

133

Fig. 82. Optical pulsing at 500 Hz

At 500 Hz, the pulses are almost completely rounded at maximum voltage. After 500 Hz,

the saturation voltage cannot be achieved by the phototransistor. While this is not strictly

necessary for communication, the high level of optical signal attenuation makes it especially

important to keep the maximum voltage achievable at the receiving end as high as possible.

Therefore, for the white light system, a minimum period between pulses of 4 ms is defined.

Tests were also performed to determine what the phototransistor voltage was at various

distances to the LED. This is shown below.

134

Fig. 83. Phototransistor voltages vs. distance for white light system

As can be seen, the signal strength is roughly 1/8th of maximum at a little of 5 inches

away. It must be mentioned that the wavelengths of the LED and phototransistor are not very

compatible; the peak wavelength of sensitivity of the phototransistor corresponds to about 0.6 at

maximum for the relative spectral power distribution at the LED, and is largely scattered. For the

components selected for optical communication, this number is at least 0.95 with a much smaller

bandwidth and the LED draws approximately four times as much current.

These components have arrived but have yet to be extensively tested. Early indications

show that a minimum pulse width of 2 ms is achievable, half of that for the white light system.

135

Final UWOC Component In-air testing

Once the selected components for UWOC arrived, an early set of tests were run to ensure

their functionality and to roughly gauge and characterize performance. A stationary receiver

(phototransistor + comparator circuit) was positioned at one end of the testing environment and

the non-inverting input voltage (V_compare) was set. A mobile transmitter (high power LED +

driver) was positioned at the furthest distance from the receiver possible such that the comparator

output was still high (i.e. a signal can still be successfully received/digitized). This was repeated

for a range of V_compare values, and in both light and dark conditions.

It should be addressed that “light” and “dark” conditions can be arbitrarily defined as

“lights on” and “lights off” in our testing environment. The proper method of defining these

environments would be to determine the illuminance (lux) level at the phototransistor in these

two conditions using an ambient light sensor. As will be shown below in the UWOC Tank

Results subsection, a light sensor has been used for testing in this project, however this sensor

arrived long after in-air testing was completed and thus only later tests include SI units. Earlier

in-air tests were going to be re-setup for the purpose of measuring the illuminance in both

lighting conditions, however events near the end of the capstone term prevented these tests from

happening.

These results of these in-air tests can be found below, where the red line represents bright

condition results and the blue line represents dark condition results.

136

Fig. 84. Distance vs. V_compare voltage for bright/dark lighting, in-air

As can be seen above, results vary in different lighting conditions. This points to

nonlinear regions of sensitivity in the phototransistor- specifically, ambient lighting allows for

greater maximum transmission distances compared to no ambient lighting. It should be briefly

mentioned that the maximum distance reached during light conditions is actually the maximum

dimension of the testing environment; in reality, this number may be far larger than ~7.5 meters.

With this new information, insights into the performance of this communication system

in various environments can be gained. For example, if low ambient light levels are detected (i.e.

the flock travels under an ice sheet), then a tighter flock configuration will prevent frames from

being lost due to range reasons.

137

UWOC Tank Results

The UWOC tank is used to gauge communication system performance in a controlled,

submerged environment. Controllable parameters include ambient light level, V_compare (or

non-inverting input of comparator) voltage, transmission distance, and all aspects of the data

frame itself.

The goal of this result set, aside from development/reiteration of the communication

system, is to create a lookup table where an illuminance level is input and BER and V_compare

are outputs. This will simplify future testing in foreign environments, as a single ambient light

level measurement will be taken once and this will provide the V_compare that the sub must set,

as well as expected performance.

A brief overview of the test methodology is offered here. An ambient light level is

selected and the tank brightens to this light level. V_compare is then set so that the comparator is

not driven high due to ambient lighting, however pulses from the transmitter can still be

received- V_compare should be as low as possible while still satisfying these conditions. Next,

the maximum transmission distance is determined by setting the transmitting LED high and

increasing the transmission distance until the receiver cannot receive the signal or the absolute

maximum transmission distance (1 meter) is reached (note: for these tests, all transmission

distances are 1 meter). Frames of random length (up to 100 bytes) are then sent with random

“break” periods (up to 1 second) in between transmissions, until 100 frames have been sent. The

bit error rate is then calculated and stored, and the process repeats for another ambient light level.

Results from tank tests are shown below.

138

Fig. 85. Bit Error Rate vs. Illuminance for UWOC tank tests

As a brief reminder, the original specifications for our communication system are: less

than 10% BER, transmission distance of at least 0.5 meters, and data rate of at least 62.5 bps. For

our system, a data rate of 250 bps is utilized and results captured above were taken with a

transmission distance of 1 meter with an average BER of 2.25%. Therefore, this communication

system exceeded design requirements by a large margin.

It should be noted that for these tests, there is no mechanism to test various distances or

V_compare voltages. The goal of these tests are to determine the average BER for this

communication system, and thus all controllable parameters are fixed. Future tests may include

maximum transmission distance w.r.t V_compare level in a submerged environment, similar to

what was done in the Final UWOC Component In-air testing section.

139

Discussion

UWOC tank tests have exceeded expectations in BER, transmission distance and data

rate, however the original specification includes turbidity as an environmental factor, which is

omitted here. Due to budgetary constraints in acquiring a turbidity meter, time constraints in

finding a solution and quantity to produce a known turbidity in water, and logistical constraints

with our submarine testing environment being a campus-wide swimming pool that we are not

allowed to make turbid, this environmental factor was ignored for these tests. The National

Sanitation Foundation sets a maximum turbidity for swimming pools of 0.5 NTU , which is 48

1/20th of the original specification’s turbidity level (10 NTU). Therefore, this factor remains

unknown and may be a large issue for this communication system. The wavelength chosen for

transmission was selected due to its resilience to varying levels of attenuation, and the results

presented in the UWOC Tank Results subsection display far better performance than imposed by

the original design specifications, all of which allow room for adjustment if the current test

parameters and configuration cannot perform adequately in a turbidity of 10 NTU.

Obstacle Avoidance (performed by Xavier)

The sonar module with the final circuitry only made it to the air testing stage. Due to the

significantly greater speed of sound in water than in air (~1480m/s vs ~344m/s respectively), a

significantly larger testing area is required for in water tests to avoid the transmission signal

overlapping the received signal. This issue puts a low end measurement limitation based upon

48 http://www.nsf.org/media/enews/documents/nsf_50_150715.pdf

140

the speed of sound in a particular transmission medium. Due to this constraint, it was determined

to be prudent to perform in air testing before moving onto a medium with more variables.

The in air test setup involved a rapidly prototyped waveguide for both the transducer and

hydrophone. This provides significantly more for directionality than amplification.

Fig. 86: 3D printed sonar module test rig with waveguide

The module depicted in Fig. 86 was mounted to a linear slide, allowing precise vertical

positioning from the ceiling. This allows for repeated measurement at known distances.

141

Fig. 87: Received echo. Yellow is the trigger for the transducer, blue is the received and

filtered signal, and purple is the comparator output.

In Fig. 87 a successfully received echo can be seen with a time difference of 16ms between the

sending of the signal and the receiving of the signal. This test was performed at a distance of

2.2m from the ceiling, and upon plugging in the transmission speed

(16ms/1000ms)*(344m/s)=5.5m, or just about twice the distance to the ceiling. This system

successfully detects obstacles at greater than 1.5m, matching the design specification.

Unfortunately, as the system approaches the lower limit of its range, the pulse from the echo

overlaps the pulse from the transmission enough that the comparator is unable to differentiate the

142

signals. As can be seen in Fig. 88 when the round trip distance is brought to less than ~5m, the

results begin being non-linear.

Fig. 88: results of too close sonar module.

This issue scales in water, and a large enough body was unable to be acquired before the end of

this section of the project. Further testing will be completed in a large body of water, but

solutions to the echo overlap will be researched as well. Possible solutions include active

suppression based on feedback from the transmission, higher frequencies, which would allow for

decreased ping durations and therefore less feedback.

143

Production Schedule

MKI phase

Testing relating to the further development of Motion Data and Captain will be

performed in the remaining weeks of 2019, before the completion of the MK II. Simultaneously,

testing of the optical communication system and the local awareness sensors will be performed

on their own test beds to ensure they are ready for implementation into the MKII. During this

phase, the evaluation of using an IMU based displacement sensor will be finalized, and

alternative designs will be selected if deemed unfeasible.

MKII phase

The completion of the MKII, scheduled for the first two weeks of 2020 bar any

mechanical setbacks, will include 3-space navigation capabilities as well as communication and

local awareness hardware. Testing, integration and additional development of the code designed

in the previous phase will be completed over a couple weeks following the systems completion.

The remainder of the time before the completion of the MKIII will be dedicated to building up

the environment in which all code sections communicate and evaluation of the final hardware

component selection.

144

The completion of the MKII, initially scheduled for the first two weeks of 2020, will

include 3-space navigation capabilities as well as communication and local awareness hardware.

This iteration will be as modular as possible given the restrictions, which will be completed by

having removable wire connectors to the outside of the hull, allowing for rapid replacement of

the external systems to test, such as sonar and optical communication modules and new iterations

of the thruster design. Testing, integration and additional development of the code designed in

the previous phase will be completed over a couple weeks following the system's completion.

The remainder of the time before the completion of the MKIII will be dedicated to building up

the environment in which all code sections communicate and evaluation of the final hardware

component selection. Unfortunately there were setbacks on the mechanical engineering aspect of

this, and not enough aspects of the system were finalized by the end of winter term to allow for

this to happen. During this time, the computer engineering team worked on completing as much

of the other modules as could be without a hull for testing.

MKIII phase

The MKIII, which should exhibit all described design aspects, will be constructed with

durability over modularity, as by this point all external components should be finalized. As the

MKII will have the same motion and sensor capabilities, minimal refactoring will be required for

this transition. Testing, modification, verification and documentation will occur during this time

period. Once the hardware has been finalized, at least one other AUV would be constructed to

work on the flocking aspect of the AFμS project.

145

Due to the outbreak of COVID-19 and the rapid disbandment of the team for this project,

it is at present unknown how close to this goal it will be possible to realize.

Future work

At the time of the submission of this paper, the team members are planning on working

remotely on all of the sections that they can, with the aim of completing as much as possible

without being in the same location as an active prototype.

Conclusions

Upon the genesis of this project, all involved team members were fully aware that the

goals set greatly exceeded the scope of a capstone project, and therefore a completed product

would be very unlikely to be finalized during the given timeline. To this end, all team members

agreed early on to continue this project for an extra term with the aim of completing more than

would have been possible otherwise. Knowing that the whole system would not be completed,

significant effort was invested early on in attempts to achieve as much as possible. The first

instance of this was a team ideation session with the aims of ensuring a clear design to work

towards that everyone agreed upon.

Another decision based on the scale of this project was the implementation of a minimal

viable product strategy, meaning that there would always be a prototype to develop on. This

approach is conducive to having a proof of concept of the system regardless of how much of the

overall system could be achieved in the alloted timeline. This methodology ended up being

146

beneficial to the cross-departmental teamwork effort, as having periodic cross-team goals

ensured all members stayed on the same timeline, and allowed for members to work on

development of other systems if aspects for the next prototype were falling behind. This allowed

for improved overall efficiency of time usage, however even with all of these efforts, the amount

of time for completing certain aspects were grossly underestimated. Due to this, prototypes

which were scheduled to be completed within the first two terms were only being finished up at

the end of the third term. While, retrospectively, it does not seem like these could have been

completed significantly earlier, our timeline estimates could have been significantly more

accurate.

The production of the final AUV iteration was planned to be completed during the fourth

term of this project, however with the disbandment of the team due to the global pandemic, it is

unsure at this point what will be able to be completed with the available resources.

 References

M. E. G. Mital ​et al​., "Characterization of underwater optical data transmission

parameters under varying conditions of turbidity and water movement," ​2017 5th International

Conference on Information and Communication Technology (ICoIC7)​, Malacca City, 2017, pp.

1-6.

Johnson, L. J., Jasman, F., Green, R. J., & Leeson, M. S. (2014). Recent advances in

underwater optical wireless communications. Underwater Technology: International Journal of

the Society for Underwater, 32(3), 167–175. doi: 10.3723/ut.32.167

147

Brundage, H. (2010). Designing a wireless underwater optical communication system.

Mechanical Engineering - Master's Degree. Retrieved from ​http://hdl.handle.net/1721.1/57699

Tinker Board S: Single Board Computer. (n.d.). Retrieved from

https://www.asus.com/Single-Board-Computer/Tinker-Board-S/​.

 S. M. Smith and D. Kronen, "Experimental results of an inexpensive short baseline

acoustic positioning system for AUV navigation," Oceans '97. MTS/IEEE Conference

Proceedings, Halifax, NS, Canada, 1997, pp. 714-720 vol.1.

 J. Snyder, "Doppler Velocity Log (DVL) navigation for observation-class ROVs,"

OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, 2010, pp. 1-9. doi:

10.1109/OCEANS.2010.5664561

 J. Sticklus, P. A. Hoeher and R. Röttgers, "Optical Underwater Communication: The

Potential of Using Converted Green LEDs in Coastal Waters," in IEEE Journal of Oceanic

Engineering, vol. 44, no. 2, pp. 535-547, April 2019.

 (n.d.). Retrieved from

https://www.nde-ed.org/EducationResources/CommunityCollege/Ultrasonics/EquipmentTrans/c

haracteristicspt.htm.

148

http://hdl.handle.net/1721.1/57699
https://www.asus.com/Single-Board-Computer/Tinker-Board-S/

 Butler, J. L., & Sherman, C. H. (2018). Transducers and Arrays for Underwater Sound.

Cham: Springer International Publishing.

 Ainslie M. A., McColm J. G., "A simplified formula for viscous and chemical absorption

in sea water", Journal of the Acoustical Society of America, 103(3), 1671-1672, 1998.

 Fish, F.E.; Schreiber, C.M.; Moored, K.W.; Liu, G.; Dong, H.; Bart-Smith, H.

Hydrodynamic Performance of Aquatic Flapping: Efficiency of Underwater Flight in the Manta.

Aerospace 2016, 3, 20.

 Font D, Tresanchez M, Siegentahler C, et al. Design and implementation of a biomimetic

turtle hydrofoil for an autonomous underwater vehicle. Sensors (Basel).

2011;11(12):11168–11187. doi:10.3390/s111211168

Bucz, Š., & Kozáková, A. (2018). Advanced Methods of PID Controller Tuning for

Specified Performance. PID Control for Industrial Processes. doi: 10.5772/intechopen.76069

Ziegler, J. G., & Nichols, N. B. (1993). Optimum Settings for Automatic Controllers.

Journal of Dynamic Systems, Measurement, and Control, 115(2B), 220–222. doi:

10.1115/1.2899060

149

Salih, Atheer L., et al. "Flight PID controller design for a UAV quadrotor." Scientific

research and essays 5.23 (2010): 3660-3667.

 Homebuilt Side Scan Sonar. (2010). MBT Electronics.

https://www.mbtelectronics.com/side-scan-sonar.php

Joy, K., Hamilton, J., Jewell, M., & Babb, I. (2016). Simple Hydrophone Design. Simple

Hydrophone Design.

https://www.nurtec.uconn.edu/wp-content/uploads/sites/287/2016/08/COSEE-TEK-Simple-Hydr

ophone-Material-List-Fabrication-Instructions-V4.2-7-7-2016.pdf

Grzinich, J. (2016, December 9). do-it-yourself hydrophones. john grzinich.

https://maaheli.ee/main/d-i-y-hydrophones/

 B. Benson et al., "Design of a low-cost, underwater acoustic modem for short-range

sensor networks," OCEANS'10 IEEE SYDNEY, Sydney, NSW, 2010, pp. 1-9.

Won TH, Park SJ. Design and implementation of an omni-directional underwater

acoustic micro-modem based on a low-power micro-controller unit. Sensors (Basel).

2012;12(2):2309–2323. doi:10.3390/s120202309

Søreide, Fredrik (2011-04-28). Ships from the Depths. ISBN 9781603442183

150

https://www.mbtelectronics.com/side-scan-sonar.php
https://www.nurtec.uconn.edu/wp-content/uploads/sites/287/2016/08/COSEE-TEK-Simple-Hydrophone-Material-List-Fabrication-Instructions-V4.2-7-7-2016.pdf
https://www.nurtec.uconn.edu/wp-content/uploads/sites/287/2016/08/COSEE-TEK-Simple-Hydrophone-Material-List-Fabrication-Instructions-V4.2-7-7-2016.pdf
https://maaheli.ee/main/d-i-y-hydrophones/

Appendices

A) Team dynamics

While the parallelization of work is a significant advantage that stems from working in a

team, a great deal of effort must be exerted to ensure that the team can function as an efficient

unit. As the scope of the course is not designed to accommodate or teach methodologies

conducive to this situation, significant research was performed at the start of the project with the

aim of proactively avoiding future problems. As all members of the teams are students, it is not

feasible for any individual to spend the majority of their time on this project, unlike the majority

of workplace environments. This meant that all research methodologies needed to be adapted to

our situation, and certain aspects would need to be developed or adapted to match the

environment.

The first implementation of research methodologies was a group ideation session where

the critical design features were determined by analysis of current aquatic research efforts,

currently available AUV solutions, and aspects judged to be important to customers. Many of the

relevant methodologies from here and here were adapted to apply towards the domain of this 49 50

project. This had the dual benefit of resulting in a well thought out project in regards to what is

available in the field, as well as ensuring that all team members were on the same page regarding

49 ​https://medium.com/the-creative-founder/needfinding-for-disruptive-innovation-71d8532f2cf3
50 ​https://medium.com/the-creative-founder/ideation-sprints-for-new-products-services-74f925190b4f

151

https://medium.com/the-creative-founder/needfinding-for-disruptive-innovation-71d8532f2cf3
https://medium.com/the-creative-founder/ideation-sprints-for-new-products-services-74f925190b4f

the project and its core features, which would remain an important factor for the duration of its

development. Photos of this session are available in ​Appendix B.

To keep everyone on the same page, we decided to adopt the idea of weekly sprint

meetings where we would inform each other of what we have accomplished since the previous

meeting, and what we planned to accomplish before the next meeting. To further this goal, it was

mandated that all research and documentation is stored in a shared cloud based environment,

allowing all members to quickly catch themselves up on the progress of other team members,

and the easy sharing of documents and ideas.

Having two distinctive groups from different departments provided more challenges than

initially anticipated. The most evident of these problems is that this effectively creates two

separate projects that need to be meticulously synchronized in their development. To assist in

this, a shared document was generated where each team could designate a project for the other

team to work, and then fill out needs and wishes. There is then a section where the other team

can leave notes on each of these aspects, either to reference or to request clarification. This was

to supplement rather than replace discussion during the weekly meetings.

The unforeseen issues stemmed from the way members of each department have been

trained to think. This has shown to be beneficial in some cases, for example there have been

design issues that one team was struggling to solve and the other was able to come up with a

solution rapidly due to a different perspective. However, it has been the case multiple times that

there was a disconnect between teams due to assumptions of common knowledge. For example

initial issues on the MKI and the spinning test rig were due to the mechanical team overlooking

the physical dimensions of wires, something that the other team took for granted as a constraint.

152

All members have learned to be careful when communicating with the other team to ensure that

optimal comprehension is achieved.

To further the efficiency of working in groups, we have made sure that as many aspects

of the AUVs components can be duplicated, allowing parallel development and testing by

different members of the team. An example of this is that the MKI will be duplicated, in full or

in part, so both members of the Computer/Electrical team can continue work over winter break.

B) Media

Uncurated live updated photo gallery of work to date:

https://photos.app.goo.gl/6BxMWJuVAo57jb7g8

Media from pool tests:

https://drive.google.com/drive/folders/18NZGOvMQ7kgKeahAzZrMWY-nTwBu4vXU?usp=sh

aring

C) Meeting Log

An attempt was made to document all team meetings, though inevitably there were several

situations where documentation was forgotten. Below is an informal meeting log.

153

When What Who Notes

https://photos.app.goo.gl/6BxMWJuVAo57jb7g8
https://drive.google.com/drive/folders/18NZGOvMQ7kgKeahAzZrMWY-nTwBu4vXU?usp=sharing
https://drive.google.com/drive/folders/18NZGOvMQ7kgKeahAzZrMWY-nTwBu4vXU?usp=sharing

154

5/14/2019 Ideation Session Alex, Jacob, Sam, Xavier See Photos

9/12/2019 Initial Piezo Testing Jacob, Xavier See Photos

9/13/2019

Piezo testing with driver

and hydrophone

prototypes Jacob, Xavier See Photos

9/18/2019

Group progress and

planning meeting Alex, Jacob, Sam, Xavier

9/19/2019 CpE specification meeting Jacob, Xavier

Discovered

transducer

housing

development

issues

9/19/2019

Call with Scott about

Transducers Jacob, Sam, (Scott), Xavier

Relevant

document here

9/20/2019

Setting up a pi

environment with needed

software and file

management. Connecting

the BNO055 IMU to test

base functionality Jacob, Xavier

Pi chosen,

raspbian

installed, scripts

added to path,

IMU packages

installed.

There may be

https://docs.google.com/document/d/1ah-pgxLf66EcCDEcAv5oBtWSa--M3UvWOkCCchHogLE/edit
https://docs.google.com/document/d/1ah-pgxLf66EcCDEcAv5oBtWSa--M3UvWOkCCchHogLE/edit

155

communication

limitations on the

pi with I2C, so

we shall see

9/22/2019

Discussing timeline,

Developed Gantt Chart Alex, Jacob, Xavier

Sam was unable

to make it, which

resulted in some

drawbacks in our

overview of

planning

9/24/2019 SRG writing meeting Alex, Jacob, Sam, Xavier

Also debriefed on

Walt Dixons

insights on the

Gantt chart and

the rest of the

project

10/1/2019

Meeting with ME

professors Alex and Sam

10/4/2019 Full team meeting Alex, Jacob, Sam, Xavier

Caught up all

team members on

cross

https://docs.google.com/document/d/1aXH7miuFzrh0EKcluA8hIVsLvbMh2L024aHcAxCqBTM/edit#heading=h.8l9q6ghvlnb7

156

departmental

needs

10/6/2019

IO and specifications

meeting Jacob, Xavier

10/7/2019

Discussion of optical

receiver requirements and

potential component

selection Jacob, Xavier

10/15/2019

Team meeting, green

grant proposal Alex, Jacon, Sam, Xavier

10/26/2019

Sonar, delegation, general

procedure meeting Alex, Sam, Xavier

10/27/2019

Sched_deadline and

interrupt meeting Jacob, Xavier

10/30/2019 Prop optimization meeting

10/31/2019 Poster planning meeting Jacob, Xavier

11/5/2019

Total power draw

estimation meeting Jacob, Xavier

11/7/2019

Team meeting, planning

out the rest of the term, Alex, Jacob, Sam, Xavier

157

ensuring MK2 will have

required features

11/12/2019 First pool test Jacob, Xavier

11/13/2019

Meeting to discuss the

results and issues

encountered during the

first pool test Alex, Jacob, Sam, Xavier

11/18/2019 Second pool test Jacob, Sam, Xavier

11/20/2019 Third pool test Alex, Jacob, Xavier

11/22/2019 Fourth pool test Alex, Jacob

11/23/2019 Design report meeting Jacob, Xavier

1/18/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

1/25/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

2/1/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

2/8/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

2/15/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

2/22/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

2/29/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

3/7/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

D) Code

Movement

ats_captain.py

import logging

import time

import PID

from collections import deque

from math import sqrt

from captain.engine.ats_engine import AtsDualThrusterEngine

"""

Class responsible for taking in motion instructions and creating

motion.

"""

class AtsDualThrusterCaptain:

 def __init__(self, motion_analyzer, l_motor_gpio:int,

r_motor_gpio:int, speed:int=10):

 # constants

 self.motor_factor = 0.25 # scale of motor power

 self.dist_tolerance = 0.5 # in meters, distance

 self.heading_tolerance = 3.6 # in degrees

 # instantiated at runtime

 self.motion_analyzer = motion_analyzer

 self.engine = AtsDualThrusterEngine(l_motor_gpio,

r_motor_gpio, self.motor_factor)

 self.l_motor = l_motor_gpio

 self.r_motor = r_motor_gpio

 self.stop_motors = {l_motor_gpio: self.engine.min,

r_motor_gpio:self.engine.min}

158

3/14/2020 Full team lab meeting Alex, Jacob, Sam, Xavier

 self.speed = speed if (speed <= self.engine.max and

speed > 0) else 50

 self.heading_PID = None

 self.dist = 0 # desired forward distance

 self.heading = None # desired heading

 self.is_active = False

 self.stop = False

 logging.info("motor_factor = %s" %

str(self.motor_factor))

 logging.info("dist_tolerance = %s" %

str(self.dist_tolerance))

 logging.info("heading_tolerance = %s" %

str(self.heading_tolerance))

 logging.info("speed = %s" % str(self.speed))

 """

 Returns the direction that the sub is moving in. Based on

the sign of

 self.speed.

 ===

 Returns:

 - 1 if moving forward

 - 0 if stationary

 - (-1) if moving backward

 """

 def _get_direction(self):

 if self.speed > 0:

 return 1

 if self.speed < 0:

 return -1

 else:

 return 0

 """

 Converts output of PID into motor values. Output of PID is

the DIFFERENCE

 in heading to strive for, not the absolute heading to

attempt. Values

 should get smaller as the sub nears its target heading.

 ===

 Inputs:

 - heading_diff: Adjustment to be made for heading (PID

output).

 - (+) positive value means sub must yaw right

159

 - (-) negative value means sub must yaw left

 - stationary: Whether sub is changing heading while

stationary.

 Returns:

 - Tuple of adjusted motor values. Format: l_motor, r_motor

 """

 def _pid_output_to_heading_adj(self, heading_diff:float,

stationary:bool=False):

 # Max drive if heading diff is more than ceiling

 heading_diff_ceiling = 10

 # max motor val difference allowable

 motor_diff_ceiling = 4

 if stationary is True:

 if heading_diff <= -heading_diff_ceiling:

 # needs to yaw left

 return -motor_diff_ceiling/2,

motor_diff_ceiling/2

 elif heading_diff >= heading_diff_ceiling:

 # needs to yaw right

 return motor_diff_ceiling/2,

-motor_diff_ceiling/2

 else:

 drive_val =

(heading_diff/heading_diff_ceiling)*(motor_diff_ceiling/2)

 return drive_val, -drive_val

 else:

 # if chain determines if sub is moving forward or

backward

 if self.speed > 0: # Case 1: moving forward

 if heading_diff < 0: # Case 1A: yaw left

 if heading_diff <= -heading_diff_ceiling: #

Case 1Aa: yaw left, full speed

 motor_diff = motor_diff_ceiling

 else: # Case 1Ab: yaw left, intermediate

speed

 motor_diff =

(-heading_diff/heading_diff_ceiling)*motor_diff_ceiling

 # Yaw left execution

 if self.speed > motor_diff:

 return -motor_diff, 0

 else:

 r_val = motor_diff - self.speed

 return -self.speed+1, r_val+1

 elif heading_diff > 0: # Case 1B: yaw right

160

 if heading_diff >= heading_diff_ceiling: #

Case 1Ba: yaw right, full speed

 motor_diff = motor_diff_ceiling

 else: # Case 1Bb: yaw right, intermediate

speed

 motor_diff =

(heading_diff/heading_diff_ceiling)*motor_diff_ceiling

 # Yaw right execution

 if self.speed > motor_diff:

 return 0, -motor_diff

 else:

 l_val = motor_diff - self.speed

 return l_val+1, -self.speed+1

 else: # Case 1C: don't yaw

 return 0, 0

 elif self.speed < 0: # Case 2: moving backward

 if heading_diff < 0: # Case 2A: yaw left

 if heading_diff <= -heading_diff_ceiling: #

Case 2Aa: yaw left, full speed

 motor_diff = motor_diff_ceiling

 else: # Case 2Ab: yaw left, intermediate

speed

 motor_diff =

(-heading_diff/heading_diff_ceiling)*motor_diff_ceiling

 # Yaw left execution

 if self.speed > motor_diff:

 return 0, motor_diff

 else:

 l_val = motor_diff - self.speed

 return -l_val-1, self.speed-1

 elif heading_diff > 0: # Case 2B: yaw right

 if heading_diff >= heading_diff_ceiling: #

Case 2Ba: yaw right, full speed

 motor_diff = motor_diff_ceiling

 else:

 motor_diff =

(heading_diff/heading_diff_ceiling)*motor_diff_ceiling

 # Yaw right execution

 if self.speed > motor_diff:

 return motor_diff, 0

 else:

 r_val = motor_diff - self.speed

 return self.speed-1, -r_val-1

 else: # Case 2C: don't yaw

 return 0, 0

161

 else:

 # Undefined state; throw error

 logging.error("Non-stationary movement

specified, but dist variable is 0. Exiting")

 return None, None

 """

 Converts adjusted PWM motor values for heading change into

final motor

 values to be sent to the motors.

 ===

 Inputs:

 - heading_adj: Adjusted PWM motor value (int or float).

 Returns:

 - Final motor value to be passed to the engine (int).

 - should be between self.engine.max and -self.engine.max

 """

 def _heading_adj_to_motor_val(self, heading_adj:float):

 direction = self._get_direction()

 motor_val = int(heading_adj + direction*self.speed)

 motor_val = min(self.engine.max, motor_val)

 motor_val = max(-self.engine.max, motor_val)

 return motor_val

 """

 Changes heading.

 ===

 Inputs:

 - target_heading: Heading to change to.

 - must be between 0 (inclusive) and 360 (exclusive).

 - loop_delay: Time to wait before PID updates.

 - num_prev_headings: Number of consecutive headings that

must be within

 self.heading_tolerance before adjustment ends.

 - Note: not dependent on loop_delay.

 Returns:

 - 0 if successful

 - 1 if fails

 """

 LOOP_DELAY = 1.0

 NUM_PREV_HEADINGS = 50

 def change_heading(self, target_heading:float,

loop_delay:float=LOOP_DELAY,

num_prev_headings:int=NUM_PREV_HEADINGS,

is_stationary:bool=False):

162

 self.is_active = True

 # target_heading check

 if target_heading < 0.0 or target_heading >= 360.0:

 logging.error("target_heading must be between 0

(inclusive) and 360 (exclusive), got %s. Exiting" %

str(target_heading))

 self.is_active = False

 return 1

 old_heading = self.heading

 self.heading = target_heading

 logging.info("target_heading = %s" %

str(target_heading))

 # loop_delay check

 if loop_delay < 0.0:

 logging.warning("loop_delay cannot be negative.

Using default loop_delay=%s." % str(self.LOOP_DELAY))

 loop_delay = self.LOOP_DELAY

 logging.info("loop_delay = %s" % str(loop_delay))

 # num_prev_headings check

 if num_prev_headings <= 0:

 logging.error("num_prev_headings must be positive

integer, got %s. Using default num_prev_headings=%s" %

(str(num_prev_headings), str(self.NUM_PREV_HEADINGS)))

 num_prev_headings = self.NUM_PREV_HEADINGS

 logging.info("num_prev_headings = %s" %

str(num_prev_headings))

 # create PID, initialize variables

 self.heading_PID =

AtsHeadingPidController(target_heading, loop_delay)

 heading = self.motion_analyzer.get_last_heading()

 self.heading_PID.set_initial_heading(heading)

 prev_headings = deque([heading])

 prev_headings_is_full = False

 # main loop, change heading and hold to make sure it's

stable

 is_stable = False

 while not is_stable:

 # exit if stopped externally

 if self.stop is True:

 self.engine.drive(self.stop_motors)

 self.heading = old_heading

163

 self.is_active = False

 return 1

 # get last heading

 heading = self.motion_analyzer.get_last_heading()

 # update PID, get feedback according to loop_delay

 if self.heading_PID.is_time_to_update():

 # frame current heading for PID

 adj_heading =

self.heading_PID.frame_heading(heading)

 # get PID output

 heading_change =

self.heading_PID.update_heading(adj_heading)

 # translate PID output to PWM motor values

 l_adj, r_adj =

self._pid_output_to_heading_adj(heading_change, is_stationary)

 # ensure adjusted values are valid

 if l_adj is None or r_adj is None:

 continue

 else:

 # get motor values within bounds

 l_motor_val =

self._heading_adj_to_motor_val(l_adj)

 r_motor_val =

self._heading_adj_to_motor_val(r_adj)

 # drive motors

 motor_drivers = dict()

 motor_drivers[self.l_motor] = l_motor_val

 motor_drivers[self.r_motor] = r_motor_val

 self.engine.drive(motor_drivers)

 # store previous N headings

 if heading != prev_headings[-1]:

 prev_headings.append(heading)

 if prev_headings_is_full:

 prev_headings.popleft()

 prev_headings_is_full = len(prev_headings) ==

num_prev_headings

 # stable if previous N headings are within tolerance

 if not prev_headings_is_full:

 is_stable = False

 else:

 avg_heading =

sum(prev_headings)/num_prev_headings

164

 is_stable1 = abs(avg_heading-target_heading) <=

self.heading_tolerance

 is_stable2 = abs(heading-target_heading) <=

self.heading_tolerance

 is_stable = is_stable1 and is_stable2 # AND

gate

 # finishes successfully

 logging.info("Successfully changed heading to %s" %

str(self.heading))

 if is_stationary is True:

 self.engine.drive(self.stop_motors)

 else:

 motor_drivers = {self.l_motor: self.speed,

self.r_motor: self.speed}

 self.engine.drive(motor_drivers)

 self.is_active = False

 return 0

 """

 Moves sub a linear distance.

 ===

 Inputs:

 - distance: Distance to move (in meters).

 - can be positive (+) or negative (-).

 Returns:

 - 0 if successful

 - 1 if fails

 """

 def move_distance(self, distance:float):

 self.is_active = True

 # distance check

 if distance == 0:

 logging.error("Distance must be non-zero. Exiting")

 self.is_active = False

 return 1

 logging.info("distance = %s" % str(distance))

 # get reference, one time variable setting`

 old_speed = self.speed

 old_dist = self.dist

 self.dist = distance

 x_axis = self.motion_analyzer.x

 y_axis = self.motion_analyzer.y

165

 x0 = self.motion_analyzer.get_displ(x_axis)

 y0 = self.motion_analyzer.get_displ(y_axis)

 logging.info("reference position = (%s, %s)" % (str(x0),

str(y0)))

 x_prev = x0

 y_prev = y0

 x = x0

 y = y0

 # spin motors

 direction = self._get_direction()

 motor_drivers = dict()

 motor_drivers[self.l_motor] = direction*self.speed

 motor_drivers[self.r_motor] = direction*self.speed

 self.engine.drive(motor_drivers)

 # main loop

 moved = 0

 abs_dist = abs(distance) - self.dist_tolerance

 while moved < abs_dist:

 # stopped externally

 if self.stop is True:

 self.engine.drive(self.stop_motors)

 self.dist = old_dist

 self.is_active = False

 return 1

 # distance changed externally

 if self.dist != distance:

 if distance == 0:

 logging.error("Distance must be non-zero.

Exiting")

 self.is_active = False

 return 1

 logging.info("Distance changed to %s" %

str(self.dist))

 distance = self.dist

 abs_dist = abs(distance) - self.dist_tolerance

 # speed changed externally

 if self.speed != old_speed:

 direction = self._get_direction()

 motor_drivers = dict()

 motor_drivers[self.l_motor] =

direction*self.speed

 motor_drivers[self.r_motor] =

direction*self.speed

166

 self.engine.drive(motor_drivers)

 old_speed = self.speed

 # get current readings, get overall distance moved

 x = self.motion_analyzer.get_displ(x_axis)

 y = self.motion_analyzer.get_displ(y_axis)

 if x_prev != x and y_prev != y: # don't calculate

if no change

 x_prev = x

 y_prev = y

 moved = sqrt((x-x0)**2 + (y-y0)**2)/100

 logging.info("Total distance moved = %s" %

str(moved))

 # finishes successfully

 self.engine.drive(self.stop_motors)

 self.is_active = False

 return 0

"""

Class that encapsulates the underlying PID controller for

heading adjustment.

"""

class AtsHeadingPidController:

 P = 0.1

 I = 0.05

 D = 0.025

 def __init__(self, setpoint:float, loop_delay:float):

 self.PID = PID.PID(self.P, self.I, self.D)

 self.PID.SetPoint = setpoint

 self.loop_delay = loop_delay

 self.initial_heading = None

 self.last_heading = None

 self.last_update_time = -1.0

 logging.info("P, I, D = %s, %s, %s" % (str(self.P),

str(self.I), str(self.D)))

 logging.info("PID.SetPoint = %s" %

str(self.PID.SetPoint))

 logging.info("loop_delay = %s" % str(self.PID.SetPoint))

 def is_time_to_update(self):

 return (time.time() - self.last_update_time) >=

self.loop_delay

167

 def set_initial_heading(self, heading:float):

 self.last_update_time = time.time()

 self.initial_heading = heading

 self.last_heading = heading

 if heading - self.PID.SetPoint < -180:

 # desired heading is closer if it goes down rather

than up

 self.PID.SetPoint -= 360

 elif self.PID.SetPoint - heading < -180:

 # desired heading is closer if it goes up rather

than down

 self.PID.SetPoint += 360

 logging.info("initial_heading = %s" % str(heading))

 def update_heading(self, heading:float):

 self.PID.update(heading)

 self.last_update_time = time.time()

 self.last_heading = heading

 out = self.PID.output

 logging.info("Updated heading at %s" %

str(self.last_update_time))

 logging.info("PID in %s, out %s" % (str(heading),

str(out)))

 return out

 def frame_heading(self, heading:float):

 # get heading within 180 degrees of last (most likely

direction change)

 while abs(self.last_heading - heading) > 180:

 if heading < self.last_heading:

 heading += 360

 else:

 heading -= 360

 return heading

ats_engine.py

import time

import logging

from captain.engine.base_engine import BaseEngine

168

class AtsDualThrusterEngine(BaseEngine):

 def __init__(self, l_motor_gpio:int, r_motor_gpio:int,

motor_factor:float=1.0, do_esc_init=True, use_i2c=False):

 self.l_motor = l_motor_gpio

 self.r_motor = r_motor_gpio

 self.motors = [self.l_motor, self.r_motor]

 self.motor_factor = 1.0 if ((motor_factor <= 0.0) or

(motor_factor > 1.0)) else motor_factor

 self.use_i2c = use_i2c

 self.max, self.min = 100, 0

 # internal PWM generation value setting

 if use_i2c is False: # using pigpio software PWM

library

 # constants

 self.pwm_range = 4000

 self.dc_full_a = int(0.1*self.pwm_range) # 10% duty

cycle

 self.dc_full_b = int(0.05*self.pwm_range) # 5% duty

cycle

 self.dc_stop = int(0.075*self.pwm_range) # 7.5%

duty cycle

 self.dc_half_a = self.dc_stop + (self.dc_full_a -

self.dc_stop)/2 # 8.75% duty cycle

 self.dc_half_b = self.dc_stop + (self.dc_full_b -

self.dc_stop)/2 # 6.25% duty cycle

 self.std_dc_range = self.dc_full_a - self.dc_full_b

 # internal cutoffs determined by motors

 self.l_zero_cutoff_h = 4 # left motor, zero cutoff

in positive direction

 self.l_zero_cutoff_l = -10 # left motor, zero

cutoff in negative direction

 self.l_max_cutoff_h = 100 # left motor, max cutoff

in positive direction

 self.l_max_cutoff_l = -100 # left motor, max cutoff

in negative direction

 self.r_zero_cutoff_h = 7 # right motor, zero cutoff

in positive direction

 self.r_zero_cutoff_l = -11 # right motor, zero

cutoff in negative direction

 self.r_max_cutoff_l = -100 # right motor, max

cutoff in positive direction

 self.r_max_cutoff_h = 100 # right motor, max cutoff

in megative direction

169

 self.l_cutoff_map_h =

(self.l_max_cutoff_h-self.l_zero_cutoff_h)/(self.max-1) # left

map for positive direction

 self.l_cutoff_map_l =

(self.l_zero_cutoff_l-self.l_max_cutoff_l)/(self.max-1) # left

map for negative direction

 self.r_cutoff_map_h =

(self.r_max_cutoff_h-self.r_zero_cutoff_h)/(self.max-1) # right

map for positive direction

 self.r_cutoff_map_l =

(self.r_zero_cutoff_l-self.r_max_cutoff_l)/(self.max-1) # right

map for negative direction

 # PWM driver setup

 import pigpio

 self.driver = pigpio.pi()

 self.driver.set_mode(self.l_motor, pigpio.OUTPUT)

 self.driver.set_mode(self.r_motor, pigpio.OUTPUT)

 self.driver.set_PWM_frequency(self.l_motor,

BaseEngine.pwm_freq)

 self.driver.set_PWM_frequency(self.r_motor,

BaseEngine.pwm_freq)

 self.driver.set_PWM_range(self.l_motor,

self.pwm_range)

 self.driver.set_PWM_range(self.r_motor,

self.pwm_range)

 # run ESC initialization

 if do_esc_init:

 self.driver.set_PWM_dutycycle(self.l_motor,

self.dc_full_a)

 self.driver.set_PWM_dutycycle(self.r_motor,

self.dc_full_a)

 time.sleep(2)

 self.driver.set_PWM_dutycycle(self.l_motor,

self.dc_stop)

 self.driver.set_PWM_dutycycle(self.r_motor,

self.dc_stop)

 time.sleep(2)

 else: # using PCA9685 I2C 16-channel 12-bit PWM board

 # constants

 self.pwm_range = 4096

 self.dc_full_a = int(0.1*self.pwm_range) # 10% duty

cycle

 self.dc_full_b = int(0.05*self.pwm_range) # 5% duty

cycle

170

 self.dc_stop = int(0.075*self.pwm_range) # 7.5%

duty cycle

 self.dc_half_a = self.dc_stop + (self.dc_full_a -

self.dc_stop)/2 # 8.75% duty cycle

 self.dc_half_b = self.dc_stop + (self.dc_full_b -

self.dc_stop)/2 # 6.25% duty cycle

 self.std_dc_range = self.dc_full_a - self.dc_full_b

 # internal cutoffs determined by motors TODO

 self.l_zero_cutoff_h = 0 # left motor, zero cutoff

in positive direction

 self.l_zero_cutoff_l = 0 # left motor, zero cutoff

in negative direction

 self.l_max_cutoff_h = 100 # left motor, max cutoff

in positive direction

 self.l_max_cutoff_l = -100 # left motor, max cutoff

in negative direction

 self.r_zero_cutoff_h = 0 # right motor, zero cutoff

in positive direction

 self.r_zero_cutoff_l = 0 # right motor, zero cutoff

in negative direction

 self.r_max_cutoff_l = -100 # right motor, max

cutoff in positive direction

 self.r_max_cutoff_h = 100 # right motor, max cutoff

in megative direction

 self.l_cutoff_map_h =

(self.l_max_cutoff_h-self.l_zero_cutoff_h)/(self.max-1) # left

map for positive direction

 self.l_cutoff_map_l =

(self.l_zero_cutoff_l-self.l_max_cutoff_l)/(self.max-1) # left

map for negative direction

 self.r_cutoff_map_h =

(self.r_max_cutoff_h-self.r_zero_cutoff_h)/(self.max-1) # right

map for positive direction

 self.r_cutoff_map_l =

(self.r_zero_cutoff_l-self.r_max_cutoff_l)/(self.max-1) # right

map for negative direction

 # PWM driver setup

 import Adafruit_PCA9685

 self.driver = Adafruit_PCA9685.PCA9685()

 self.driver.set_pwm_freq(BaseEngine.pwm_freq)

 # run ESC initialization

 if do_esc_init:

 self.driver.set_pwm(self.l_motor, 0,

self.dc_full_a)

171

 self.driver.set_pwm(self.r_motor, 0,

self.dc_full_a)

 time.sleep(2)

 self.driver.set_pwm(self.l_motor, 0,

self.dc_stop)

 self.driver.set_pwm(self.r_motor, 0,

self.dc_stop)

 time.sleep(2)

 logging.info("motor_factor = %s" % str(motor_factor))

 logging.info("l_motor = %s" % str(self.l_motor))

 logging.info("r_motor = %s" % str(self.r_motor))

 logging.info("use_i2c = %s" % str(use_i2c))

 """

 Converts a supplied motor speed factor to dutycycle value.

 ===

 Inputs:

 - motor_val: motor speed factor. Must be between -self.max

and self.max.

 Returns:

 - dc: int, dutycycle value to be sent to PWM generator.

 """

 def _motor_to_dc(self, motor:int, motor_val:int):

 # scale motor value to extended dc value range for I2C

board

 if self.use_i2c is True:

 scale_factor =

(self.dc_full_a-self.dc_full_b)/(self.std_dc_range)

 motor_val = scale_factor*motor_val

 dc = None

 # motor ID check

 if motor == self.l_motor:

 if motor_val == self.min: # stationary

 return self.dc_stop

 elif motor_val > self.min: # positive direction

 dc = self.dc_stop + self.l_zero_cutoff_h +

(motor_val-1)*self.l_cutoff_map_h

 else: # negative direction

 dc = self.dc_stop + self.l_zero_cutoff_l +

(motor_val+1)*self.l_cutoff_map_l

 elif motor == self.r_motor:

 if motor_val == self.min: # stationary

 return self.dc_stop

 elif motor_val > self.min: # positive direction

172

 dc = self.dc_stop + self.r_zero_cutoff_h +

(motor_val-1)*self.r_cutoff_map_h

 else: # negative direction

 dc = self.dc_stop + self.r_zero_cutoff_l +

(motor_val+1)*self.r_cutoff_map_l

 return int(dc) # Will be None if it doesn't recognize

the motor ID

 """

 Drives motors at a given speed factor.

 ===

 Inputs:

 - drive_values: motor ID's to speed factor.

 - Format: {motor ID: speed factor}

 - speed factor must be between -self.max and self.max

 """

 def drive(self, drive_values:dict):

 # go through all motor values

 for motor, motor_val in drive_values.items():

 # motor val within range check

 if abs(motor_val) > self.max:

 logging.error("Max motor val is %s, got %s from

motor %s. Skipping" % (str(self.max), str(abs(motor_val)),

str(motor)))

 continue

 # adjust motor val and drive

 dc = self._motor_to_dc(motor, motor_val)

 if dc is not None:

 if self.use_i2c is False:

 self.driver.set_PWM_dutycycle(motor, dc)

 else:

 self.driver.set_pwm(motor, 0, dc)

 else:

 logging.error("Motor at pin %s isn't recognized.

Skipping" % str(motor))

 continue

 # set motor values for referencing

 if motor == self.l_motor:

 self.l_val = dc

 elif motor == self.r_motor:

 self.r_val = dc

173

base_engine.py

class BaseEngine:

 pwm_freq = 50

Dead Reckoning

IMU_handler.py

Written by Xavier quinn to interface with the BNO055 IMU for

dead reckoning

import logging

from Adafruit_BNO055 import BNO055

import pickle

import time

class IMU_handler(object):

def __init__(self):

self.IMU= BNO055.BNO055(i2c=3,rst=18)

self.IMU.begin()

self.IMU.set_mode(0x0C) #Puts in FMC mode (auto

calibrate)

Print out an error if system status is in error

mode.

status, self_test, error =

self.IMU.get_system_status()

if status == 0x01:

logging.CRITICAL('IMU error: {0}'.format(error))

logging.CRITICAL('IMU failed to initialize')

prev_string=""

self.load_cal() #loads saved calibration between runs

#Allows calibration readout before starting the main

loop

try:

while True:

174

print("calibrating")

syscal, gyro, accel, mag =

self.IMU.get_calibration_status()

cal_string='Sys_cal={0} Gyro_cal={1}

Accel_cal={2} Mag_cal={3}'.format(syscal, gyro, accel, mag)

if prev_string!=cal_string :

print(cal_string)

prev_string=cal_string

if(syscal+ gyro+ accel+ mag>=9 and accel==3)

:

print("calibrated")

self.save_cal() #saves calibration if

its good.

break

except KeyboardInterrupt:

pass

def collect_data(self) :

start_time=time.time()

mag_vector=self.IMU.read_linear_acceleration() #gets

acceleration data

end_time=time.time()

collect_time=(end_time-start_time)/2 + start_time #may

be negligible, but should be a slightly more accurate estimation

of when it was measured.

euler_vals=self.IMU.read_euler()

return mag_vector, euler_vals,collect_time

def load_cal(self) :

try:

with open('.calibration_data', 'rb') as file:

data=pickle.load(file)

self.IMU.set_calibration(data)

except Exception as e:

print("No calculation data to load {}".format(e))

pass

def save_cal(self):

cal_data=self.IMU.get_calibration()

print("saving cal {}".format(cal_data))

with open('.calibration_data', 'wb') as file:

pickle.dump(cal_data, file)

175

motion_data.py

#Written by Xavier Quinn to generate dead reckoning data in a

usable format

import sys

import time

import os

import numpy as np

import scipy

import matplotlib.pyplot as plt

import copy

import scipy.integrate as it

import threading

from scipy.signal import butter, lfilter, freqz, lfilter_zi

import scipy.signal as signal

import csv

try:

import IMU_handler

except:

from motion_analyzer import IMU_handler

pass

#~~~

##Methods:

#General

#Format print

VERBOSE=False

VERBOSE=True

def fprint(label, value) :

try: VERBOSE

except NameError: print("{0}: {1}\n".format(label, value))

else:

if VERBOSE :

print("{0}: {1}\n".format(label, value))

def lprint(label,toPrint) :

print(label)

for data in toPrint :

176

for variableName in data :

fprint("entry",data)

#~~~

class motion_data :

def __init__(self, range=1000, order=5, cutoff=1.2):

self.x = 0

self.y = 1

self.z = 2

self.accel_log=[[],[],[]]

self.filt_accel_log=[[],[],[]]

self.veloc_log=[[],[],[]]

self.displ_log=[[],[],[]]

self.time_log=[]

self.heading_log=[]

self.roll_log=[]

self.pitch_log=[]

self.integral_range=int(range)

self.filter_order=int(order)

self.filter_cutoff=cutoff

self.IMU=IMU_handler.IMU_handler()

self.fs_rate=568 #0.002349853516s (average time

diff) -> 568.715999872Hz x2->~1200

self.filter_order=4

self.filter_cutoff=2.5

print("About to thread")

thread = threading.Thread(target=self.generate_data)

thread.daemon = True #

Daemonize thread

thread.start() #this will continually update the data.

#takes in an accel list with the previous 2 values, time

list and the most recent displ and veloc values

def accel_breakdown(self,accel_list, timing_list,

last_veloc, last_displ) :

177

#this integrates acceleration, including the two

previous points

veloc_list=self.integrate(accel_list, timing_list,

last_veloc)

displ_list=self.integrate(veloc_list, timing_list[1:],

last_displ)

return list(veloc_list)[1:], list(displ_list)

##~~~~~~~~~~~~~~~~~Setters~~~~~~~~~~~~~~~~~~~~~~~~

def add_accel(self,accel, axis) :

self.accel_log[axis].append(accel)

def add_filt_accel(self,accel, axis) :

self.filt_accel_log[axis].extend(accel)

def add_veloc(self,veloc, axis) :

self.veloc_log[axis].extend(veloc)

def add_displ(self,displ, axis) :

self.displ_log[axis].extend(displ)

def add_time(self,time) :

self.time_log.append(time)

def add_euler(self,euler) :

self.heading_log.append(euler[0])

self.roll_log.append(euler[1])

self.pitch_log.append(euler[2])

##~~

def filter_data(self,to_filter, timing) :

rate=self.calculate_fs(timing)

order=self.filter_order

cutoff=self.filter_cutoff

filtered=self.butter_filter(cutoff,rate,order,to_filter)

return filtered

#butter filter

def butter_filter(self,cutoff, fs_rate, order, data):

return data

178

b, a = self.butter_lowpass(cutoff, fs_rate,

order=order)

zi = lfilter_zi(b, a)

y = lfilter(b, a, data , zi=zi*data[0])

y = signal.filtfilt(b, a, data, method="gust") #this

method should give improved transition smoothing.

return y

def butter_lowpass(self,cutoff, fs, order=5):

nyq = 0.5 * fs #TODO: does this make sense?

normal_cutoff = cutoff / nyq

b, a = butter(order, normal_cutoff, btype='low',

analog=False)

return b, a

def calculate_fs(self,timing_list) :

diff_list=[]

for i in range(1,len(timing_list)) :

diff_list.append(timing_list[i]-timing_list[i-1])

average_diff=sum(diff_list)/len(timing_list)

freq=1/average_diff

return freq

def generate_data(self) :

while True :

self.pull_IMU_data()

if(self.get_accel_len()%self.integral_range==0) :

 #if there are enough new accel points

self.update_data() #this populates values

for XYZ AVD

##~~~~~~~~~~~~~~~~~Getters~~~~~~~~~~~~~~~~~~~~~~~

#gets the n most recent values

def get_accel_range(self,num_points, axis) :

return self.accel_log[axis][-num_points:]

def get_filt_accel_range(self,num_points, axis) :

return self.filt_accel_log[axis][-num_points:]

#gets the n most recent values

def get_veloc_range(self,num_points, axis) :

return self.veloc_log[axis][-num_points:]

179

#gets the n most recent values

def get_displ_range(self,num_points, axis) :

return self.displ_log[axis][-num_points:]

def get_last_displ(self, axis) :

try :

return self.displ_log[axis][-1]

except : #if not populated yet

return 0

def get_last_veloc(self, axis) :

try :

return self.veloc_log[axis][-1]

except : #if not populated yet

return 0

#gets the n most recent values

def get_full_displ(self,axis) :

return self.displ_log[axis]

#gets the n most recent values

def get_full_veloc(self,axis) :

return self.veloc_log[axis]

#gets the n most recent values

def get_full_accel(self,axis) :

return self.accel_log[axis]

#gets the n most recent values

def get_full_filt_accel(self,axis) :

return self.filt_accel_log[axis]

#gets the n most recent values

def get_time_range(self,num_points) :

return self.time_log[-num_points:]

def get_accel(self,axis) : #returns the most recent value

try:

return self.accel_log[axis][-1]

except :

raise ValueError("Array is not populated")

def get_accel_len(self) : #returns length of accel list

try:

180

return len(self.accel_log[0])

except :

raise ValueError("Accel log has no length?")

def get_veloc(self,axis) : #returns the most recent value

try:

return self.veloc_log[axis][-1]

except :

return 0 #If it has yet to move, it is at 0

def get_displ(self,axis) : #returns net displacement

try:

return sum(self.displ_log[axis])

except :

return 0 #If it has yet to move, it is at 0

def get_time(self) : #returns the entire time Array

try :

return self.time_log

except :

raise ValueError("Something must have gone very

wrong.")

def get_last_heading(self) :

try:

return self.heading_log[-1]

except :

return 0

def get_last_roll(self) :

return self.roll_log[-1]

def get_last_pitch(self) :

return self.pitch_log[-1]

##~~

#this integrates a single list and returns an integral

list.

def integrate(self,to_integrate, timing, start_val) :

integral=it.cumtrapz(to_integrate, x=timing)

integral=[x+start_val for x in integral] #This adds

the start val to everything but the val that is the start val

return integral

181

def dump_data(self, file) :

to_save=[self.get_full_filt_accel(0),

self.get_full_filt_accel(1),

self.get_full_filt_accel(2),

self.get_full_accel(0),

self.get_full_accel(1),

self.get_full_accel(2),

self.get_full_veloc(0),

self.get_full_veloc(1),

self.get_full_veloc(2),

self.get_full_displ(0),

self.get_full_displ(1),

self.get_full_displ(2),

self.get_time()

]

self._save_to_csv(to_save, file)

#Saves all passed lists to a csv which can be easily read

into sheets

#to_save is of the form [list_0, list_1, list_n]

def _save_to_csv(self, to_save, file) :

zipped=zip(*to_save)

with open('{}.csv'.format(file), 'w',

encoding="ISO-8859-1", newline='') as myfile:

 wr = csv.writer(myfile)

 wr.writerows(list(zipped))

myfile.close()

Pulls IMU data

def pull_IMU_data(self) :

acceleration, euler_vals,time_stamp

=self.IMU.collect_data()

self.add_euler(euler_vals)

for i in range(3) :

self.add_accel(acceleration[i], i)

self.add_time(time_stamp)

Updates Data

def update_data(self) :

182

timing_list=self.get_time_range(self.integral_range)

for i in range(3) : #there are 3 axis, XYZ

accel_list=self.get_accel_range(self.integral_range, i)

filtered_accel=self.filter_data(accel_list,

timing_list)

last_veloc=self.get_last_veloc(i)

last_displ=self.get_last_displ(i)

#generates new displ values

new_veloc, new_displ

=self.accel_breakdown(filtered_accel, timing_list, last_veloc,

last_displ)

#adds the values to their storage

self.add_filt_accel(filtered_accel, i)

self.add_veloc(new_veloc, i)

self.add_displ(new_displ, i)

filter_minimization.py

Written by Xavier Quinn

The goal of this is to run multiple acceleration tests on the

test rig while gathering data and performing minimization on

filter parameters to generate the best possible settings for

this system.

import motion_data

import matplotlib.pyplot as plt

import time as tm

import logging

import csv

import requests

import scipy.optimize as optimize

import scipy.integrate as it

import pickle

import copy

import math

import numpy as np

from scipy.signal import find_peaks

import time as tm

183

logging_fmt = '[%(asctime)s] %(filename)s [%(levelname)s]

%(message)s'

logging.basicConfig(filename='test.log', filemode='w',

format=logging_fmt, level=logging.INFO)

logging.getLogger().setLevel(logging.INFO)

def control_servo(speed) :

access_token = "5e6258fe38fd74782b03e54885850847c40517d7"

address="https://api.particle.io/v1/devices/events"

data = {'access_token': access_token,

'name':"chtapodiPWM",'data': '{}'.format(speed)}

r = requests.post(address, data=data)

logging.info(r.text)

#taken from https://stackoverflow.com/a/1969274 because google

is faster than memory

#scales from one range of values to another

def translate(value, leftMin, leftMax, rightMin, rightMax):

Figure out how 'wide' each range is

leftSpan = leftMax - leftMin

rightSpan = rightMax - rightMin

Convert the left range into a 0-1 range (float)

valueScaled = float(value - leftMin) / float(leftSpan)

Convert the 0-1 range into a value in the right range.

return rightMin + (valueScaled * rightSpan)

#generates acceleration data based on known test rig behavior

def gen_accel(time_val, period) :

accel_val=(gen_veloc(time_val, period)**2)/.1

mapped_val=translate(accel_val, 0,40, 0,5.09168459433)

return mapped_val

#generates velocity data based on known test rig behavior

def gen_veloc(time_val, period) :

value=-math.cos(time_val*((2*np.pi)/period))+1 #this is the

integral of sin(x), with variable period.

return value

#Sends the correct signals to the photon to generated the

correct motion signal on the test rig

184

def rot_handle(time_val, period) :

veloc_val=gen_veloc(time_val, period)

mapped_val=translate(veloc_val, 0,2, 90,120) #maps between

pwm values which result in an omega of 0->~71rpm

control_servo(mapped_val)

#collects and returns relevant data

def run_data_colletion(period, range, order, cutoff) :

logging.info("starting")

md=motion_data.motion_data(range=range, order=order,

cutoff=cutoff)

logging.info("initialized")

start_time=tm.time()

while(md.get_accel_len()<range) : #this should handle the

case where at this point filtered data has not been generated.

Was hard-coded to 500

print(md.get_accel_len())

tm.sleep(period*3)

print("the wait is over")

accel=[md.get_full_accel(0),md.get_full_accel(1),md.get_full_acc

el(2)]

filt_accel=[md.get_full_filt_accel(0),md.get_full_filt_accel(1),

md.get_full_filt_accel(2)]

veloc=[md.get_full_veloc(0),md.get_full_veloc(1),md.get_full_vel

oc(2)]

displ=[md.get_full_displ(0),md.get_full_displ(1),

md.get_full_displ(2)]

time=md.get_time_range(len(displ[0]))

logging.info("collected")

return accel, filt_accel, veloc, displ, time

#Caclulates real values

def calc_real_vals(period, input_time) :

time=copy.deepcopy(input_time)

accel_list=[]

for time_inst in input_time :

185

accel_list.append(gen_accel(time_inst, period))

return accel_list

#Performs RMSE eval for the scoring of the minimization

def rmse_eval(actual,predicted) :

result=0

for i in range(min(len(predicted), len(actual))) :

result=result+(predicted[i]-actual[i])**2

average=result/len(actual)

return average

#Saves all passed lists to a csv which can be easily read into

sheets

#to_save is of the form [list_0, list_1, list_n]

def save_to_csv(to_save, file) :

zipped=zip(*to_save)

with open('{}.csv'.format(file), 'w',

encoding="ISO-8859-1", newline='') as myfile:

 wr = csv.writer(myfile)

 wr.writerows(list(zipped))

myfile.close()

#The function to be minimized, which uses filtfilt(), a form of

butter

def butter_minimize(param) :

tm.sleep(10)

rot_veloc=7.1356041057

period=10

range=param[0]

order=param[1]

cutoff=param[2]

print("range {}".format(range))

print("order {}".format(order))

print("cutoff {}".format(cutoff))

accel,filt_accel, veloc, displ,

time=run_data_colletion(period, range, order, cutoff)

z_accel=accel[2]

zerod_list=find_zero_point(z_accel)

z_veloc=veloc[2]

z_displ=displ[2]

186

filt_z_accel=filt_accel[2]

try:

if len(zerod_list)>1 :

first_zero=time[int(zerod_list[1])] #first entry

in zerod list is the index of the first detected zero point,

which will match with the time at the same index

else:

first_zero=time[int(zerod_list[0])] #first entry

in zerod list is the index of the first detected zero point,

which will match with the time at the same index

except Exception as e:

print("no peaks found?: ", e)

print('len {}'.format(len(zerod_list)))

print("XXXXXXXXXXXXXXXXXXXXXXXXX\n")

fig, ax = plt.subplots()

ax.plot(z_accel, label="z_accel")

ax.plot(filt_z_accel, label="filt_z_accel")

for point in zerod_list :

ax.scatter([point], [1], c="r")

ax.legend()

ax.set(xlabel='time (index)',

 title='Calculated Vs. Measured')

ax.grid()

#Saves plot with relevant title

file="data/ERROR {0}-{1}-{2}:{3}".format(range, order,

cutoff, tm.time())

fig.savefig("{}.png".format(file))

plt.close()

return 20 # I think this large a value was confusig

the gradient, and I know 20 is above the score I care about

9223372036854775807 #maxint -- returns the worst value if

something is wrong enough to make it so no peaks are detected.

If I was only running one iteration of this code, this would be

a foolish way to handle this, but as I will be optimizing the

optimization ranges, this should be inconsequential to the

results.

zerod_time=[entry-first_zero for entry in time]

real_z=calc_real_vals(period,zerod_time)

187

real_z_accel=copy.deepcopy(real_z) #at the moment I am not

using the other 2

#Runs scoring calculation

accel_score=rmse_eval(real_z_accel,filt_z_accel)

logging.info("accel score {}".format(accel_score))

score=accel_score

print("combined score {}".format(score))

print("iteration done\n-------------------------------\n")

#Plots out data specific to epoch

fig, ax = plt.subplots()

ax.plot(z_accel, label="z_accel")

ax.plot(real_z_accel, label="real_z_accel", linestyle='-.',

c='red')

ax.plot(filt_z_accel, label="filt_z_accel", linestyle='--',

c='orange')

ax.plot(z_veloc, label="z_veloc", linestyle='-', c='cyan')

ax.plot(z_displ, label="z_displ", linestyle='-', c='green')

for point in zerod_list :

ax.scatter([point], [1], c="r")

ax.legend()

ax.set(xlabel='time (index)',

 title='Calculated Vs. Measured\n{0} {1}

{2}'.format(range, order, cutoff))

ax.grid()

#Saves plot with relevant title

file="data/{3}:{0}-{1}-{2}".format(range, order, cutoff,

score)

fig.savefig("{}.png".format(file))

plt.close()

save_to_csv([z_accel,filt_z_accel,real_z_accel], file)

return score

Locates minima to align real with gathered data

def find_zero_point(y) :

y_inv=[0-i for i in y]

found = find_peaks(y_inv, height=-.5)

peaks=found[0]

188

this way the x-axis corresponds to the index of x

peak_list=[]

#This groups by valley

prev_peak=peaks[0]

peak_range=[]

for point in peaks[1:] :

if y[point]>-.5 : #this should constrain peak

selection to actual valleys

diff=point-prev_peak

if diff<500 :

peak_range.append(point)

else :

peak_list.append(copy.deepcopy(peak_range))

peak_range=[]

prev_peak=point

#this just averages the group, I could weight the average

by how prominant the peak is, but based on the level of

resultion being used, I do not think this will make a

difference.

minima_list=[]

if (len(peak_list)>0) :

for range in peak_list :

if(len(range)>0) :

minima=sum(range)/len(range)

minima_list.append(int(minima))

else:

print("synchronization point highly estimated")

minima_list.append(y.index(min(y)))

print("minima_list ", minima_list)

return minima_list

#pretty much just encapsultes the minimization function

def minimize(params, bounds): #[range, order, cutoff]

#minimization

res = optimize.minimize(butter_minimize, params,

bounds=bounds)

return res

#initialize values

range_range=(100,500)

order_range=(2,5)

cutoff_range=(.5,1.2)

189

params=[500,3,.75]

bounds=[range_range,order_range,cutoff_range]

print("beginning")

Begin minimization

results=minimize(params, bounds)

print(results)

#Saves the results

with open('minimization_results', 'wb') as file:

pickle.dump(results, file)

Sonar

sonar.py

Written by Xavier Quinn

The sonar class encapsulates all functions to run and test the

sonar module for the AFuS project

import time

import pigpio

import pickle

import matplotlib.pyplot as plt

class sonar :

def __init__(self, ping_duration, transmit_pin,

receive_pin, medium="water"):

self.SPEED_OF_SOUND_IN_WATER=1480

self.SPEED_OF_SOUND_IN_AIR=344

if medium=="air" :

self.sound_velocity=self.SPEED_OF_SOUND_IN_AIR

elif medium=="water" :

self.sound_velocity=self.SPEED_OF_SOUND_IN_WATER

self.transmit_pin=transmit_pin

self.receive_pin=receive_pin

self.ping_duration=ping_duration

self.pio=pigpio.pi()

self.send_tick=0

190

self.travel_duration=0

self.callback=self.init_listen()

self.received_list=[]

self.has_pinged=False;

self.detected_transmit=False;

self.init_transmit()

#initializes reception and callback

def init_listen(self) :

self.pio.set_mode(self.receive_pin, pigpio.INPUT)

return self.pio.callback(self.receive_pin,

pigpio.RISING_EDGE, self.heard_response)

#initialized transmission

def init_transmit(self) :

self.pio.set_mode(self.transmit_pin, pigpio.OUTPUT)

#Sends out a ping for the configured duration, handles

logic for preparing distance calculation

def ping(self) :

#updates the tick at which the ping was sent.

self.received_list=[]

pre_tick=self.pio.get_current_tick()

self.pio.write(self.transmit_pin,1)

time.sleep(self.ping_duration)

self.pio.write(self.transmit_pin, 0)

post_tick=self.pio.get_current_tick()

tick_diff=post_tick-pre_tick

print("diff", tick_diff)

self.send_tick= pre_tick#int(tick_diff/2)+pre_tick

#This is using the middle time as the send time.

self.travel_duration=0 #This is so an incorrect value

cannot accidentally be acquired while waiting for the callback

self.has_pinged=True;

return self.send_tick

#gets the most recent distance value.

def get_dist(self) :

timeout=.5

191

start_time=time.time()

while(self.travel_duration==0) : #this should act to

catch unhandled pings

time.sleep(.01)

print("waiting")

if (time.time()-start_time)>timeout :

print("UNRECEIVED PING")

return 0

dur_ms=self.travel_duration/1000000

return self.sound_velocity*dur_ms

#callback function which is triggered when a received ping

is detected.

def heard_response(self, gpio, level, tick) :

self.received_list.append(tick)

print("CALLB")

if (self.has_pinged and not self.detected_transmit) :

print("detected transmit")

self.detected_transmit=True

elif (self.detected_transmit) :

print("detected echo")

self.detected_transmit=True

has_pinged=False

self.travel_duration=self.received_list[-1]-self.received_list[0

]

print("duration ", self.travel_duration)

#encapsulates pinging and waiting

def measure_dist(self) :

dist=0

while dist ==0 :

self.ping()

dist=self.get_dist()

return dist

returns the average value of a list of values

def take_average(list) :

print("list ", list)

192

average=sum(list)/len(list)

print("average ", average)

return average

def main():

transmit_pin=18

receive_pin=17

duration=.0035 #~4 periods

yell=sonar(duration, transmit_pin, receive_pin, "air")

print("setup")

#Code that generates and evaluates data by running a series

of pings at known distances and comparing the average of 5

trials to the real value.

DEFAULT_HEIGHT=2.2

DEFAULT_STEP=.02

#gets start height

start_height=float(input("please input starting height(m)

(default: {}(m)): ".format(DEFAULT_HEIGHT))or DEFAULT_HEIGHT)

#2.2m is the start height of the stand

print("confirmed: ", start_height,"(m)")

height_step=float(input("please input step size(m)

(default: {}(m)): ".format(DEFAULT_STEP))or DEFAULT_STEP) #

print("confirmed: ", height_step,"(m)")

curr_height=start_height

test_list=[]

num_trials=5

print("\nstarting tests at {0}(m), default step of {1} and

{2} trials\n\n".format(start_height, height_step, num_trials))

try:

while (True) :

#take input height, take measurement, take step,

loop

trial_data=[]

for i in range(num_trials) :

try:

trial_data.append(yell.measure_dist())

except KeyboardInterrupt:

193

trial_data.append(-1)

print("ERROR")

pass

time.sleep(.1) #delay between tests

av_data=take_average(trial_data)

trial_data.append(av_data) #last element is the

average

test_list.append([curr_height*2, trial_data])

print("actual:{0:.2f}\tmeasured:{1:.2f}".format(curr_height*2,

trial_data[-1]))

curr_height+=height_step

curr_height=float(input("new height(m) (default:

{:.2f}(m)): ".format(curr_height))or curr_height) #2.2m is the

start height of the stand

print("confirmed: ", curr_height,"(m)")

except KeyboardInterrupt:

pass

for_sheet="real, "

for i in range(len(test_list[0][1])-1) :

for_sheet+="test {}, ".format(i)

for_sheet+="average\n"

for test in test_list :

line_str=str(test[0])

for val in test[1] :

line_str+=", {}".format(val)

line_str+="\n"

for_sheet+=line_str

print("actual:{0:.2f}\tmeasured:{1:.2f}".format(test[0],

test[1][-1]))

file_name=input("\nPlease input save name: " or

time.time())

pickle.dump(test_list,open("{}.p".format(file_name),"wb"))

print(for_sheet)

194

if __name__== "__main__":

 main()

Communication

decoder.py

import logging

import struct

import pigpio

dac packages

import busio

import board

import adafruit_mcp4725

DEFAULT_FREQ = 125 # in Hz

DEFAULT_VAL_LENGTH = 32 # in bits

DEFAULT_TOLERANCE = 499 # in microseconds

DAC_RESOLUTION = 4096 # 12-bits

DEFAULT_V_COMPARE = 2.5 # in volts

V_MAX = 5.0 # in volts

V_MIN = 0.0 # in volts

class AtsMk2Decoder:

 def __init__(self, pi, pin, val_length=DEFAULT_VAL_LENGTH,

freq=DEFAULT_FREQ, tolerance=DEFAULT_TOLERANCE,

v_compare=DEFAULT_V_COMPARE):

 # receiver

 self.rx = AtsMk2Receiver(pi, pin, val_length, freq,

tolerance, v_compare)

 def is_busy(self):

 return self.rx.is_busy()

 def int(self, bits):

 return int(bits)

 def float(self, bits):

195

 float_val = None

 try:

 float_val = struct.unpack('!f',struct.pack('!I',

int(bits, 2)))[0]

 except TypeError:

 float_val = struct.unpack('!f',struct.pack('!I',

int(bits)))[0]

 return float_val

 def char(self, bits):

 return chr(bits)

 def get_raw_data(self):

 return self.rx.get_raw_data()

 def get_bit_string(self):

 return self.rx.get_bit_string()

 def get_v_compare(self):

 return self.rx.get_v_compare()

 def get_dataf(self):

 return [self.float(i) for i in self.rx.get_raw_data()]

 def clear(self):

 return self.rx.clear()

 def shutdown(self):

 return self.rx.shutdown()

class AtsMk2Receiver:

 def __init__(self, pi, pin, val_length=DEFAULT_VAL_LENGTH,

freq=DEFAULT_FREQ, tolerance=DEFAULT_TOLERANCE,

v_compare=DEFAULT_V_COMPARE):

 # hardware interface

 self.pi = pi

 self.pin = pin

 self.pi.set_mode(self.pin, pigpio.INPUT)

 self._i2c = busio.I2C(board.SCL, board.SDA)

 self._dac = adafruit_mcp4725.MCP4725(self._i2c,

address=0x62)

 self.set_v_compare(v_compare)

 # square wave signal characteristics

196

 self.freq = freq

 self.period = 1/freq

 self.period_us = self.period*1000000

 self.half_period_us = self.period_us/2

 # data

 self.val_length = val_length

 self.tolerance = tolerance

 self._ticks = list()

 self._data = list()

 self._bit_data = str()

 # callback function

 self._cb = pi.callback(pin, pigpio.RISING_EDGE,

self._cb_func)

 # log everything

 logging.info("pin = %s" % str(self.pin))

 logging.info("v_compare = %s" % str(v_compare))

 logging.info("freq = %s" % str(self.freq))

 logging.info("period = %s" % str(self.period))

 logging.info("period_us = %s" % str(self.period_us))

 logging.info("half_period_us = %s" %

str(self.half_period_us))

 logging.info("val_length = %s" % str(self.val_length))

 def set_v_compare(self, voltage):

 if voltage > V_MAX or voltage < V_MIN:

 logging.error("Value must be between %s and %s

(inclusive), got %s" % (str(V_MIN), str(V_MAX), str(voltage)))

 return 1

 self._dac.raw_value =

int((voltage/V_MAX)*(DAC_RESOLUTION-1))

 return 0

 def get_v_compare(self):

 return (self._dac.raw_value/(DAC_RESOLUTION-1))*V_MAX

 def _cb_func(self, pin, level, tick):

 #print("cb")

 self._ticks.append(tick)

 def is_busy(self):

 if len(self._ticks) == 0:

 return True

 elif self.pi.get_current_tick()-self._ticks[-1] <

3*self.period_us:

197

 return True

 else:

 return False

 def _process(self):

 # data is present check

 if len(self._ticks) < 1:

 return 1

 # loop variables

 skip_next = False

 last_val = 0

 bit_counter = 0

 val_counter = 0

 data = 0b0

 # loop over ticks from callback function, extract 1's

and 0's

 for i in range(1, len(self._ticks)):

 diff = self._ticks[i] - self._ticks[i-1]

 if skip_next is True: # two concurrent pulses if a

bit is 1

 skip_next = False

 continue

 elif self._is_full_period(diff): # full-period/bit

0

 bit_counter += 1

 data |= 0<<(self.val_length-bit_counter)

 self._bit_data += "0"

 elif self._is_half_period(diff): # half-period/bit

1

 bit_counter += 1

 data |= 1<<(self.val_length-bit_counter)

 self._bit_data += "1"

 skip_next = True

 else:

 logging.error("Error on value %s, bit %s: diff

is %s" % (str(val_counter), str(bit_counter), str(diff)))

 # finished value check

 if bit_counter == self.val_length:

 self._data.append(data)

 val_counter += 1

 bit_counter = 0

 data = 0b0

 # successful finish

 logging.info("Received %d values: %s" % (val_counter,

str(self._data)))

198

 return 0

 def _is_half_period(self, num):

 return self.half_period_us+self.tolerance >= num >=

self.half_period_us-self.tolerance

 def _is_full_period(self, num):

 return self.period_us+self.tolerance >= num >=

self.period_us-self.tolerance

 def get_raw_data(self):

 if len(self._data) == 0:

 self._process()

 return self._data

 def get_bit_string(self):

 if len(self._bit_data) == 0:

 self._process()

 return self._bit_data

 def clear(self):

 self._ticks = list()

 self._data = list()

 self._bit_data = str()

 self._cb.reset_tally()

 return 0

 def shutdown(self):

 self.clear()

 self._cb.cancel()

encoder.py

import logging

import struct

import numpy as np

import pigpio

DEFAULT_FREQ = 125 # in Hz

DEFAULT_VAL_LENGTH = 32 # in bits

DEFAULT_DC = 0.025 # out of 1.00

"""

199

Class responsible for encoding values into bit representations

and sending them.

"""

class AtsMk2Encoder:

 def __init__(self, pi, pin, val_length=DEFAULT_VAL_LENGTH,

freq=DEFAULT_FREQ, dc=DEFAULT_DC):

 # data

 self._data = list()

 # transmitter

 self.tx = AtsMk2Transmitter(pi, pin, val_length, freq,

dc)

 """

 Encode integer as string of 0's and 1's, and returns it.

 ===

 Inputs:

 - data: 32-bit integer.

 Returns:

 - Binary representation of 'data' as a String.

 - i.e. input of 5 produces "101"

 """

 def int(self, data):

 return str(bin(data))[2:]

 """

 Encode float as a string of 0's anad 1's, and returns it.

 This method adheres to the IEEE 754 32-bit floating point

number standard.

 ===

 Inputs:

 - data: float (32 or 64 bit).

 Returns:

 - Binary representation of 'data' as a String.

 """

 def float(self, data):

 return format(struct.unpack('!I', struct.pack('!f',

np.float32(data)))[0], '032b')

 """

 Encode char (or string of chars) as a string of 0's and 1's,

and returns it.

 ===

 Inputs:

 - data: char (<=8 bits), or a string of chars.

200

 Returns:

 - Binary representation of 'data' as a String.

 """

 def char(self, data):

 return str(bin(int.from_bytes(data.encode(),

'big')))[2:]

 """

 Encode string as a string of 0's and 1's, and returns it.

 ===

 Inputs:

 - data: string of chars (<=8 bits).

 Returns:

 - Binary representation of 'data' as a String.

 """

 def str(self, data):

 return self.char(data)

 """

 Add an encoded value to the queue of items that will be

transmitted.

 Note: Encode items by using any of the above methods (int,

float, char, str).

 ===

 Inputs:

 - encoded_data: Binary string, returned by above methods.

 Returns:

 - 0 if successful

 """

 def add(self, encoded_data):

 self._data.append(encoded_data)

 logging.info("Adding encoded value %s" %

str(encoded_data))

 return 0

 """

 Send all values that have been encoded.

 ===

 Returns:

 - 0 if successful

 - 1 if failure

 """

 def send(self):

 return self.tx.send(self._data)

201

 """

 Clear all waveforms and data.

 Returns:

 - 0 if successful

 """

 def clear(self):

 self._data = list()

 return self.tx.clear()

"""

Class responsible for generating/transmitting PPM-encoded

signal.

"""

class AtsMk2Transmitter:

 def __init__(self, pi, pin, val_length=DEFAULT_VAL_LENGTH,

freq=DEFAULT_FREQ, dc=DEFAULT_DC):

 # Hardware interface

 self.pi = pi

 self.pin = pin

 self.pi.set_mode(self.pin, pigpio.OUTPUT)

 # Square wave signal characteristics

 self.freq = freq

 self.period = 1/freq

 self.period_us = self.period*1000000

 # Waveform settings

 self.dc = dc

 self.pw_hi = int(self.dc*self.period_us)

 self.pw_lo = int((self.period_us/2)-self.pw_hi)

 self.pw_zero = int(2*self.pw_lo + self.pw_hi)

 # data

 self.val_length = val_length

 self._pulses = []

 self._id = None

 # log everything

 logging.info("pin = %s" % str(self.pin))

 logging.info("freq = %s" % str(self.freq))

 logging.info("period = %s" % str(self.period))

 logging.info("period_us = %s" % str(self.period_us))

 logging.info("dc = %s" % str(self.dc))

 logging.info("val_length = %s" % str(self.val_length))

 """

202

 Convert string of bits to pulses in a waveform.

 ===

 Inputs:

 - bits: Binary string.

 Returns:

 - 0 if successful

 """

 def bits_to_pulses(self, bits):

 # prepend extra zeros to make neat 32-bit chunks

 num_zeros = self.val_length - (len(bits) %

self.val_length)

 if num_zeros != self.val_length:

 bits = "0"*num_zeros + bits

 # encode bit by bit

 for bit in bits:

 self._pulses.append(pigpio.pulse(1<<self.pin, 0,

self.pw_hi))

 if int(bit) == 1: # bit is 1, send pulse

 self._pulses.append(pigpio.pulse(0, 1<<self.pin,

self.pw_lo))

 self._pulses.append(pigpio.pulse(1<<self.pin, 0,

self.pw_hi))

 self._pulses.append(pigpio.pulse(0, 1<<self.pin,

self.pw_lo))

 else: # bit is 0, stay low

 self._pulses.append(pigpio.pulse(0, 1<<self.pin,

self.pw_zero))

 return 0

 """

 Transmit a provided waveform.

 ===

 Inputs:

 - data: Waveform to transmit (list of pigpio.pulse()

objects).

 Returns:

 - 0 if successful

 - 1 if failure

 """

 def send(self, data):

 # convert all values into waveforms

 for bits in data:

 # successful encoding check

 if self.bits_to_pulses(bits) != 0:

203

 logging.error("Issue encoding val %s. Exiting" %

str(bits))

 return 1

 # prepare and send wave

 return self._send()

 """

 Underlying method to transmit a waveform on a pin.

 ===

 Returns:

 - 0 if successful

 - 1 if failure

 """

 def _send(self):

 # append closing clock pulse

 self._pulses.append(pigpio.pulse(1<<self.pin, 0,

self.pw_hi))

 self._pulses.append(pigpio.pulse(0, 1<<self.pin,

self.pw_lo))

 # clear existing waveforms, create new one

 self.pi.wave_clear()

 self.pi.wave_add_generic(self._pulses)

 self._id = self.pi.wave_create()

 self.pi.wave_send_once(self._id)

 logging.info("Sent wave with ID %s" % str(self._id))

 # clear waveform for next time

 self._data = []

 self._pulses = []

 return 0

 """

 Clear all waveform data.

 ===

 Returns:

 - 0 if successful

 """

 def clear(self):

 self.pi.wave_clear()

 self._pulses = list()

 return 0

204

